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Classification - Introduction

e Linear regression: Y is quantitative.
e But: very often Y can be qualitative (often called categorical).
e Qualitative variables take values in an unordered set C, such as:

eye color € brown, blue, green
email € spam, ham.

e Given a feature vector X and a qualitative response Y taking, the classification task is
to build a function that takes as input the feature vector X and predicts its value for
Y.

e For that classification methods often estimate the probabilities that X belongs to each
category in C for the basis of classification.

e We are now looking at approaches for predicting qualitative responses, also known as
classification methods.



Classification - Introduction

e Examples of Classification problems:

1. A person arrives at the emergency room with a set of symptoms that could possibly be
attributed to one of three medical conditions. Which of the three conditions does the
individual have?

2. An online banking service must be able to determine whether or not a transaction being
performed on the site is fraudulent, on the basis of the user’s IP address, past transaction
history, and so forth.

3. On the basis of DNA sequence data for a number of patients with and without a given
disease, a biologist would like to figure out which DNA mutations are deleterious
(disease-causing) and which are not.

e Similarities to the linear regression problem:
e There is a set of training observations (@1, 1), ..., (Zn, Yn)
e We want our classifier to perform well not only on the training data, but also on
unobserved test data. (Recall lecture 1)



Classification - Introduction

e We will use the Default data set.
e Predict, whether an individual will default on his/her credit card balance, given
annual income and monthly credit card balance.
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Figure 1: The Defoult data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card
payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of
default status. 4



Classification - Introduction

e Can we use Linear Regression?
e Reason 1:

e Suppose for the Default classification task we code:

v — 0, %fNO
1, ifYes

e Can we simply perform a linear regression of Y on X and classify as "Yes” if V' >05-
interpreting them as probabilities?

e In this special case of a binary outcome, it can be shown that XB is in fact an estimate of
Pr(Y = default|X)

e BUT: Linear regression might produce probabilities less than zero or bigger than one -
which makes them hard to be interpreted as probabilities (see next slide). Logistic

regression is more appropriate.

an



Classification - Introduction
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Figure 2: The orange marks indicate the response Y, either 0 or 1. Linear regression does not

estimate Pr(Y = 1]X) well. Logistic regression seems well suited to the task.



Classification - Introduction

e Reason 2:
e Now suppose we have a response variable with three possible values. A patient presents at
the emergency room, and we must classify them according to their symptoms

1, if stroke;
Y=4¢ 2, ifdrug overdose;
3, ifeplileptic seizure

e This coding suggests an ordering, and in fact implies that the difference between stroke
and drug overdose is the same as between drug overdose and epileptic
seizure.

e We could simply reorder the encoding, which would lead to a completely different model.
Linear regression is not appropriate here.

e Only if the response has a natural ordering (mild, moderate, severe) linear regression could
be used.

e Multiclass Logistic Regression is more appropriate



Classification - Introduction

e Two reasons why linear regression is not suitable for qualitative responses:
1. A regression method cannot accommodate a qualitative response with more than two
classes
2. a regression method will not provide meaningful estimates of Pr(Y|X), even with just two
classes
e In the following we will discuss the following model:
e Logistic Regression
e Linear Discriminant Analysis



Simple Logistic Regression



Logistic Regression

Reconsider again the default data set.

Instead of modelling Y directly, logistic regression models the probability that Y
belongs to a particular category.

Pr(default = Yes| balance) (1)

Pr(default = Yes| balance) € [0,1]

We might conclude that default = Yes for any individual for whom
Pr(balance) > 0.5 or if the company is more conservatively Pr(balance) > 0.1.



Logistic Regression

e How should we model this relationship?
e Let’s write p(X) = Pr(Y = 1|X) for short and consider using balance to predict
default. Logistic regression uses the logistic function:
ePotBiX
(1+ 650+51X)

e Note: (e~ 2.71828 is a mathematical constant [Euler’s number.|)

p(X) = (2)

e [t is easy to see that no matter the values for Sy, 8i,or X: p(X) will have values between 0
and 1 (see Figure 2, the logistic function will produce an S-shape)
e A bit of rearrangement results in:

2 s called the odds and can take any value between 0 and oo, indicating very high

(1-p(X))
and very low probabilities, respectively.

e (Odds are stated with regard to likelihoods. How likely is one event compared to another.
e Example:
e On average 1 in 5 people will default, implies an odds of % = % since p(X) = 0.2. 10



Logistic Regression Review

Questions:

a) On average, what fraction of people with an odds of 0.37 of defaulting on their credit
card payment will in fact default?

b) Suppose that an individual has a 16% chance of defaulting on her credit card
payment. What are the odds that she will default?

11



Logistic Regression

e Taking the logarithm leads to:

p(X) _
log ((1 — p(X))) =B+ /X (4)

e This monotone transformation is called the log odds or logit transformation of p(X)
(by log we mean natural log : In.).
e Interpretation:
e Linear regressions: 5 = average change in Y, when we increase X by one unit.
e Logistic regressions: a one unit increase in X increases the log odds by ;. Even though
(6) does not imply a straight line, given a positive 81 and increasing X is associated with a
higher p(X).
e Further: the amount by which p(X) changes due to a one unit change in X depends on the
current value of X (see Figure 2).
e Note: no linear relationship between p(X) and X, thus 51 does not correspond to the
change in p(X).



Logistic Regression
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Figure 3: The orange marks indicate the response Y, either 0 or 1. Linear regression does not

estimate Pr(Y = 1]X) well. Logistic regression seems well suited to the task.
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Logistic Regression - Estimation

e For the linear regression we used OLS, now we use mazimum likelihood to estimate
the parameters.

e That is, we pick fy and f; in such a way that the predicted probability p(X) of
default for each individual corresponds as closely as possible to the individually
observed default status.

1(Bo, 1) = [ p@) ] - plai)) (5)

By=1 i’y =0
with
ePotBiX
p(X) = (11 cPotBiX) (6)

e Intuitively: maximum likelihood provides us with estimates such that p(X) is close to
one for all individuals that defaulted and close to zero for those who did not.



Logistic Regression - Estimation

e Most statistical packages can fit linear logistic regression models by maximum

likelihood.
Coefficient  Std. Error Z-Statistic P-Value
Intercept -10.6513 0.3612 -29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

Table 1: For the Default data, estimated coefficients of the logistic regression model that predicts the probability of
default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055

units.

e Notes:
e Hypothesis Tests and Confidence Intervals apply, just like in the linear regression

framework.



Logistic Regression — Estimation Review

Using the data from the previous slide, answer the following questions:

a) Compute an approximate 95% Confidence Interval for f;.

Interpret the estimated coefficient value for (.

)
b) Can you reject the null hypothesis Hy : 81 = 0 for o = 5%?
¢)

)

d) Interpret the estimated coefficient value for 3.

16



Simple Logistic Regression

Prediction



Logistic Regression - Prediction

e What is our estimated probability of default for someone with a balance of $10007?

ePo+BiX ¢~ 10.6513-0.0055x 1000
b(X) = 1+ BothiX = 1t ¢ 10.6513+0.005x1000 0.006
e With a balance of $20007
ePothiX ¢—10.6513+0.0055 % 2000
p(X) = 0.586

] 1 htBiX ~ 1+ ¢ 10.6513+0.005x2000

17



Logistic Regression - Prediction

e As with linear regression, we cann also incorporate qualitative variables into the

model.

e For example, consider student with a 0/1 encoding as the predictor:

Coefficient  Std. Error Z-Statistic P-Value
Intercept -3.5041 0.0707 -49.55 <0.0001
student[Yes] 0.4049 0.1150 3.52 0.0004
. 6—3.5041+0.4049><1
Pr(default = Yes| student = Yes) = =0.0431

ﬁ*(default = Yes| student = No) =

1+ e—3-5041+0.4049x 1

o~ 3-50414-0.4049 X0
= 0.0292

1+ e—3-5041+0.4049 0

18
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Multiple Logistic Regression

e Logistic regression with several variables:

- p(X)

P@)):&+&&+m+@&

1
0g<1

ePotBiXit+...+5, X,

p(X) - 1+ ePotBiXi+...+8, X,

e Again we use Maximum Likelihood to estimate 3y, 51, ..., 5,

Coefficient Std. Error Z-Statistic = p-Value
Intercept -10.8690 0.4923 -22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] -0.6468 0.2362 -2.74 0.0062

e Why is coefficient for student now negative, while it was positive before?

19



Multiple Logistic Regression

Default Rate

500 1000 1500 2000

Credit Card Balance

e Orange and blue lines show default rates of
students and non-students as a function of credit
card balance

e For a fixed value of balance and income a student is
less likely to default than a non-student

e Dotted line: across all values of balance and
income, students have an overall higher default
rate than non-students. Thus, a positive coefficient
in the simple model.

Credit Card Balance

1000 1500 2000 2500

No Yes
Student Status

Student Status and Credit Card Balance are correlated

Students tend to have higher balances than non-students,
which from the dotted line implies a higher probability of
default, implying A student is riskier than a non-student.

BUT: for each level of balance, students default less than
non-students.

Multiple logistic regression can tease this out. This

phenomenon is also called confounding. 70



Multiple Logistic Regression — Prediction Review

e Assume a student with a credit card balance of $1500 and an income of $40 000, what
is his probability of default?

o~ 10-869-+0.00574 X 15004-0.003 X 40—0.6468 x 1
= 0.058

p(X) = 1 + —10.869+0.00574x 1500-+0.003 X 40—0.6468 x 1

e A non-student with the same balance and income has the following probability of
default:

—10.869+0.00574x 15000003 x 40—0.6468 x 0
=0.105

b(X) = 1 + e—10.869-+0.00574x 1500+0.003 x 40—0.6468 X 0

21
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General Models for Classification

e Logistic Regression: Directly model Pr(Y = k| X = x)

e Now: Model the distribution of X in each of the classes separately, and then use Bayes
theorem to flip things around and obtain Pr(Y = k| X = z).

e Recall Bayes Theorem

Pr(X =z|Y =k)x Pr(Y =k)

Pr(Y=kX=1z)= Pr(X = )

22



General Models for Classification - Bayes Theorem

e Recall Bayes Theorem - continued:

e Suppose we have K classes and thus Y can take on K distinct and unordered possible
values

e Let m;, be the prior probability that a randomly chosen observation comes from the kth
class

e Let fi(z) = Pr(X|Y = k) denote the density function of X for an observation that comes
from the kth class

e Remember: fi(z) is rel. large, if the probability that an observation in the kth class has
X~z

e Then Bayes Theorem states:

Pr(Y =k)x Pr(X =z|Y = k) i X fi()

PT’(Y:HX:I): PT(X:.L) :ZIK:17T]><f](l‘)7

e [t is the probability that the observation belongs to the kth class, given the predictor value
for that observation.

23



General Models for Classification - Bayes Theorem

e Recall Bayes Theorem:

T X fi()

Zszl ™ X fl(x) ’

e Instead of directly computing the posterior probability py(z) = Pr(Y = k|X = z), we

Pr(Y=kX=2)=

can simply plug in estimates of 7, and fi(x)

e Estimating 7 is easy if we have a random sample from the population: we simply
compute the fraction of the training observations that belong to the kth class.

e But: Estimating the density function fi(z) is much more challenging = we need some

simplifying assumptions.

24



General Models for Classification - Bayes Theorem

e Depending on the assumptions we are making we end up with different classifiers:
e Linear Discriminant Analysis (LDA): fi(z) is assumed to be normal/ Gaussian;
Covariances between the classes are assumed equal
e Quadratic Discriminant Analysis (QDA): fi(z) is assumed to be normal/ Gaussian;
Covariances between the classes are assumed not to be equal
e Naive Bayes: f;(z) is unknown; Covariances between the classes are assumed not to be

equal
e Our focus is on Linear Discriminant Analysis (LDA) with one (p = 1) and several

(p > 1) predictors.



General Models for Classification

e Why do we need another method, when we have logistic regression?

e Stability. When there is substantial separation between the two classes, the parameter
estimates for the logistic regression model are surprisingly unstable. The methods that we
consider in this section do not suffer from this problem.

e Distribution and Sample Size. If the distribution of the predictors X is approximately
normal in each of the classes and the sample size is small, then the approaches in this
section may be more accurate than logistic regression.

e Fuxtensions. The methods in this section can be naturally extended to the case of more

than two response classes.

26



Generative Models for

Classification

Linear Discriminant Analysis with

p=1



GMC - LDA when p=1

e Assume p = 1 - i.e. we only have one predictor.

Goal: We want an estimate of fi(z) that we can plug into Bayes Theorem in order to
estimate pi(z).

Then classify an observation to the class k, for which p;(z) is highest.

To estimate f;(z) we need to make an assumption about its form: Here we assume
gaussianity or normality - that is fi(z) has a normal shape.

27



GMC - LDA when p=1

e Recall the form of the Gaussian density:

1 _yemy

= —B 2
V2o

e Here yy, is the mean, and o7 the variance (in class k). We will assume that all the

0? = 0% = ...0% (i.e. the variance is the same across all classes).

fo(z) (7)

e Plugging this into Bayes formula, we get a rather complex expression for
pr(z) = Pr(Y = k|X = z):

o] —
e
|
=
U
2

e Luckily, there are simplifications and cancellations.

28



GMC - LDA when p=1

e To classify at the value X = z, we need to see which of the py(z) is largest.
e Expressing equation (8) up to a proportionality constant:

e~ 3 (8

k(T) OC T,

pr() \ﬁg

e Taking logs, and discarding terms that do not depend on k, we see that this is
equivalent to assigning z to the class with the largest discriminant score 0y (z):

1

log(pi(#)) o« log(me) — log(V2m0) — = (z — )’

1 .
o log(my) — T‘_Q[l’2 — 2xpy + 2]

e Note that §;(z) is a linear function of z - i.e. thats why the name Linear
Discriminant Analysis!

29



GMC - LDA when p=1

e For example, assume K = 2 and 7w = 7y, then the Bayes classifier assigns an
observation to class 1, if:

20 (p — p2) > i — i (9)

and to class 2 otherwise.

e The Bayes decision boundary is the point for which §;(z) = d2(x). One can show that
this amounts to:

x:u1+M2
2

(10)

e Homework: Can you derive them yourself? (Hint: set d1(z) > do(z) & 01(x) = d2(x),
respectively)

e Let’s look at an example...

30



GMC - LDA when p=1
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Figure 4: Left: Two one-dimensional normal density functions are shown. The dashed vertical line represents the Bayes
decision boundary. Right: 20 observations were drawn from each of the two classes, and are shown as histograms. The Bayes
decision boundary is again shown as a dashed vertical line. The solid vertical line represents the LDA decision boundary
estimated from the training data.
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GMC - LDA when p

e Assumption: Everything is known.

e Left: The two normal density functions that are displayed, fi(z) and fa(z), represent two distinct
classes. The parameters for these classes are respectively: p = 1.5, o = 1.5 and o7 = 05 = 1.

e Typically we don’t know these parameters; we just have the training data. In that case we
simply estimate the parameters and plug them into (8).

e Note: There is some overlap between the normal distributions - thus given some X = z values,
there is some uncertainty to which class the values belong.

e Further assume that each observation is equally likely to come from either class: m = m = 0.5 -
then we can see that the Bayes classifier assigns the observations to class 1 if z < 0 and to class
2 otherwise.

e The dashed vertical line is the Bayes decision boundary (Note: we can only compute the Bayes
decision boundary as we know that X is drawn from a Gaussian distribution and we know all
the parameters involved).

32



GMC - LDA when p=1

e In practice, to apply the Bayes classifier we need to estimate the parameters: 7y, fix
and 62, using the training data at hand.
e Estimating the parameters:

N ny;
T — —
n
. 1
My = ™ E T;
k ";/,:k
£2

k 11y1—k

727@71

where 67 = m T Digmk (B — fir,)? is the usual formula for the estimated variance in
the kth class.




GMC - LDA when p=1

e Having obtained our estimates for 7, i and 62, we plug them into the following formula and

assign an observation X = z to the class for which:
Si(z) =z x B — i + log(m) (11)
o? 202
is largest.
e So classifying to the largest &(z) amounts to classifying to the class for which
Pr(Y = k|X = z) is largest.
e The word linear in the classifier’s name stems from the fact that the discriminant functions

0r(z) are linear functions of x.



GMC — LDA when p=1 Review

e Lets continue with the previous example and recall Figure 4:

e The right-hand panel of Figure 4 displays a histogram of a random sample of 20
observations from each class.

e Begin by estimating 7y, jir and 7.

e Then computed the decision boundary, shown as a black solid line, that results from
assigning an observation to the class for which (11) is largest.

e All points to the left of this line will be assigned to the green class, while points to the
right of this line are assigned to the purple class.

e Here, given n; = ny = 20, we have 7 = 72 and the decision boundary corresponds to the

midpoint between the sample means for the two classes, £ 1;’12.

e We can observe that the LDA decision boundary is slightly to the left of the optimal Bayes

decision boundary, which instead equals #5#2 — 0.

35
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GMC - LDA when p >1

e Let’s extend the LDA to the case of multiple predictors (p > 1)
e The multivariate Gaussian distribution assumes that each individual predictor follows

a one-dimensional normal distribution, with some correlation between each pair of
predictors.

Figure 5: Two multivariate Gaussian density functions are shown, with p = 2. Left: The two predictors are
uncorrelated. Right: The two variables have a correlation of 0.7. 36



GMC - LDA when p >1

e To indicate that a p-dimensional random variable X has a multivariate Gaussian
distribution, we write X ~ N(u, %),

E(X) = p is the mean of X (a vector with p components)

Cov(X) = X is the p x p covariance matrix of X.

Formally the Multivariate Gaussian Density is given by:

1 — =) TS (z—
f(I):We 3 (z—p) (z—p)

e In the case of p > 1 predictors, the LDA classifier assumes:

e Observations in the kth class are drawn from a multivariate Gaussian distribution
N (:u/lﬂ E)

e 1y is a class-specific mean vector

e the covariance matrix (3) that is common to all K classes



GMC - LDA when p >1

Plugging the density function for the kth class, fy(X = z), into (11) and rearranging:

_ 1 _
0u(z) = 278y — Sl B+ log (12)

Despite its complex form d;(z) is a linear function.

As before, in practice, we need to estimate p,..px, m, ..., 7x and 3.

e Let’s look at an example...



GMC - LDA when p >1 Review

Xo
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Figure 6: Here m; = m =73 = % The dashed lines are known as the Bayes decision boundaries.
Were they known, they would yield the fewest misclassification errors, among all possible classifiers.
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GMC - LDA when p >1 Review

e Three equally-sized Gaussian classes are shown with class-specific mean vectors and a common
covariance matrix.

e The three ellipses represent regions that contain 95% of the probability for each of the three
classes.

e The dashed lines are the Bayes decision boundaries, i.e. they represent the set of values x for
which 0x(z) = §i(z).

e Note there are three lines representing the Bayes decision boundaries because there are three
pairs of classes among the three classes.

e That is, one Bayes decision boundary separates class 1 from class 2, one separates class 1 from
class 3, and one separates class 2 from class 3.

e These three Bayes decision boundaries divide the predictor space into three regions.

e Then, the Bayes classifier will classify an observation according to the region in which it is
located.

40



GMC - LDA when p >1

e Once again, we need to estimate the unknown parameters pq, ...ux, 71, ..., g and ¥;

the formulas are similar to those used in the one dimensional case.
e To assign a new observation X = z, LDA plugs these estimates into (8) to obtain
quantities 0z (x)

e Once we have estimates Sk(x), we can turn these into estimates for class probabilities

Pr(Y=kX=y)=

e So classifying to the largest Sk;(m) amounts to classifying to the class for which
Pr(Y = k| X = z) is largest.

e When K = 2, we classify to class 2 if Pr(Y = k|X = ) < 0.5, else to class 1.

41
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Classification - Evaluation

e How to evaluate a classifier?

e We can use a confusion matriz to extract information about the performance of the classifier.

True Class
- or Null ‘ -+ or Null ‘ Total

Predicted - or Null True Neg. (TN) | False Neg. (FN) | N*
Class + or Non-null | False Pos. (FP) | True Pos (TP) p*
Total ‘ N ‘ P ‘

Table 2: Confusion Matrix. Possible results when applying a classifier or diagnostic test to a
population.

e N (P) - true number of negative (positive) cases

e N* (P*) - number of classified negative (positive) cases
42



Classification - Evaluation

Name Definition | Synonyms

False Pos. rate FP/N Type I error, 1—Specificity

True Pos. rate TP/P 1—-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* Precision, 1—false discovery proportion
Neg. Pred. value | TN/N*

Table 3: Important measures for classification and diagnostic testing, derived from the previous

table.

e (lass specific performance - i.e. how does the classifier perform in identifying those

with or without the specified characteristic.

e Sensitivity (True Positive Rate): the proportion of those who have been classified as
positive out of those who are actually truly positive.

e Specificity (True Negative Rate): proportion of those who have been classified as

negative out of those who are truly negative.

43



Classification - Evaluation

e Let’s perform classification on the default data set to predict if an individual will
default, based on their income and credit card balance. (A confusion matrix
example)...

e Use 10,000 training observations and an Linear Discriminant Analysis algorithm

True Default Status
No Yes Total
Predicted No | 9644 252 9896
Default Status — Yes 23 81 104
Total | 9667 333 10000

Table 4: A confusion matrix compares the classifiers predictions to the true default statuses for the 10,000 training
observations in the Default data set. Elements on the diagonal of the matrix represent individuals whose default statuses were
correctly predicted, while off-diagonal elements represent individuals that were misclassified. The classifier made incorrect
predictions for 23 individuals who did not default and for 252 individuals who did default.
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Classification - Evaluation Review

Questions

a) What is the sensitivity of the classifier?

)
) What is the specificity of the classifier?
)
)

=

o

What is the precision of the classifier?

o,

What is the training error rate of the overall model? How does this training error do,
in comparison to a null classifier - i.e. one that always predicts that an individual will
not default?

e) What can you say about the class specific performance of the classifier - that is the
performance of the classifier for identifying true defaulter, and true non-defaulters?

45



Classification - Evaluation

Confusion Matrix interpretation:

e (23 4 252)/10,000 errors - a 2.75% misclassification rate !

e Some caveats: This is training error, and we may be overfitting (the ratio of p vs. n is
important)

e If we used a null classifier - i.e. always classify to class NO in this case — we would
make 333/10000 errors, or only 3.33%.

e Of the true No’s, we make 23/9667 = 0.2% errors; of the true Yes’s, we make
252/333 = 75.7% errors! =While overall error rate is low, the error among those who
defaulted is pretty high.

46



Classification - Evaluation

e False positive rate: The fraction of negative examples that are classified as positive —
0.2% in example

e False negative rate: The fraction of positive examples that are classified as negative —
75.7% in example

e The previous table was created by classifying each observation to the class for which
the probability is the largest.

e For the Bayes classifier this amounts to assign a value to class Yes if:

ﬁ\r(Default = Yes|Balance,Student) > 0.5

e We can change the two error rates by changing the threshold from 0.5 to some other
value in [0, 1]:

f’?’(Default = Yes|Balance,Student) > threshold

and vary the "threshold”.

47



Classification - Evaluation

e Use 10000 training observations and a threshold value of 0.2:

True Default Status
No Yes Total
Predicted No | 9432 138 9570
Default Status  Yes 235 195 430
Total | 9667 333 10000

Table 5: A confusion matrix compares the classifiers predictions to the true default statuses for the 10,000 training
observations in the Default data set. Elements on the diagonal of the matrix represent individuals whose default statuses were
correctly predicted, while off-diagonal elements represent individuals that were misclassified. The classifier made incorrect
predictions for 23 individuals who did not default and for 252 individuals who did default.
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Classification - Evaluation Review

Questions:

a) What is the performance of the classifier among the individuals that truly defaulted?
b) What is the performance of the classifier among the individuals who do not defaulted?

¢) What is the overall error rate of the model?

49



Classification - Evaluation

e Varying the threshold...
e The Receiver Operating Characteristic (ROC) curve is a popular graphic to
simultaneously display the False positive and True positive rate.

ROC Curve
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Classification - Evaluation

The ROC curve continued...

e The ROC curve traces out two types of error as we vary the threshold value for the probability
of default (actual thresholds are not shown):
e The true positive rate (sensitivity): the fraction of defaulters that are correctly identified,
using a given threshold value.
e The false positive rate (1-specificity): the fraction of non-defaulters that we classify
incorrectly as defaulters, using that same threshold value.
e The ideal ROC curve hugs the top left corner, indicating a high true positive rate and a low
false positive rate.
e The dotted line represents the “no information” classifier; this is what we would expect if
student status and credit card balance are not associated with probability of default.
e The performance of the classifier over all possible thresholds is given by the area under the

ROC curve (AUC). Higher AUC is better.

e ROC curves are useful for comparing different classifier.



Homework

e Homework: Please read Section 13.1 on Hypothesis Testing



Disclaimer: This material has been prepared by Philipp Kremer and Constantin Lisson in 2021 and draws very
extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to statistical learning

and the corresponding lecture slides available from these authors.



Homework Exercises




Logistic Regression — Prediction Review

Suppose we collect data for a group of students in a statistics class with variables X =
hours studied, X = undergrad GPA, and Y = receive an A. We fit a logistic regression
and produce estimated coefficient, ,6’0 -6, ,6’1 = 0.05, 52 = Il

Questions:

a) Estimate the probability that a student who studies for 40h and has an undergrad
GPA of 3.5 gets an A in the class.

b) How many hours would the student in part a) need to study to have a 50% chance of
getting an A in the class?

54



Solutions to review and

homework questions




Solutions to review and homework questions

Review questions from Slide 11:

a)

X))
0= p(X)) = (.37
p(X) = 0.37(1 — p(X))
1.37p(X) = 0.37

0.37
p(X) = 137 = =27%
b)

p(X) 0.16

odds = T (X)) ~ 084

ot
)



Solutions to review and homework questions

Review questions from Slide 16:

a) Approx. 95% CI: 0.0055 £ 2 x 0.0002 = [0.0051, 0.0059]
b) Yes, as the p-values for both coefficients 3y and §; are smaller than oo = 0.05.
¢) Given that balance is zero, the probability for default is equal to:

106513

p(X) = 1 _ ¢—10.6513 ~0 (13)

d) A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055

units.



Solutions to review and homework questions

Review questions from Slide 45:

a) Sensitivity: Percentage of true defaulters that are identified

81
— =0.243 = 24.3 14
333 & (14)

b) Specificity: Percentage of non-defaulters that have been correctly classified

(1- %) = 0.998 ~ 99.8% (15)

¢) Precision: Percentage of those predicted as default, that have truly defaulted

81
Tod = 0.7788 ~ 77.88% (16)



Solutions to review and homework questions

Review questions from Slide 45 - cont.:

d) Training Error Rate: (2%3'32) = 0.0275 ~ 2.75% If we classified to the prior — always to class

No in this case — we would make % errors, or only 3.33% - thus using a trivial null classifier

leads to a only slightly higher training set error.

e) Of the true No’s, we make 9527 = 0.002 =~ 0.2% errors; of the true Yes's, we make
252

22 = 0.757 = 75.7% errors!



Solutions to review and homework questions

Review questions from Slide 49:
a) 32 = 0.5856 ~ 58.56%
b) 82 _ (.9757 =~ 97.57%

9667
c¢) Training Error Rate: W 0.0373 ~ 3.73%



Solutions to review and homework questions

Review questions from Slide 54: Note:

e(Bot+P1X1+B2Xz)
p(X) = (1+ e(BoFBLX1+B2%) )

where: X; = hours studied and Xy = undergrad GPA
a)

o(—6+0.05X,+X)

p(X) = 1+ e(—6+0.05X1+X)
o(—640.05%40+3.5)

(1 4L 6(764»0405 x4043.5) )

o(—05)
(1 L e(—().S))

= 37.75%
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Solutions to review and homework questions

Review questions from Slide 54:

b)

(— 640051 +X5)

p(X) = 1+ e(—6+0.05X+X;)

o(—640.05.X,+3.5)
0.50

T 1 F e(—6+0.05X,+3.5)
0.50(1 4 e("EIHOBXY _ ((~2:5+0.05%1)

0.50 & 0.50(~25+0:05X1) _ (=2:5+0.05%))

0.50 = 0.50¢(~*F0-054)
log(1) = —2.5 4+ 0.05X;

2.5

0.0

X = = 50 hours

ot
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This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.
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