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Linear regression

• Linear regression is a simple approach to supervised learning. It assumes that the
dependence of Y on x1, x2, x3, ...xp is linear.

• Consider the following advertising data:
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• Linear regression is extremely useful both conceptually and practically and it is often
a starting point for the more advanced methods. 2



Linear regression

• Questions that we might want to answer:
• Is there a relationship between advertising budget and sales?
• How strong is the relationship between advertising budget and sales?
• Which media contributes to sales?
• How accurately can we predict future sales?
• Is the relationship linear?
• Is there synergy among the advertising media?

• Tools we consider to answer these questions:
1. Simple Linear Regression (SLR)
2. Multiple Linear Regression (MLR)

• Throughout this lecture we will make assumptions regarding the SLR & the MLR
model (OLS Assumptions) to derive appropriate estimates and procedures to answer
the questions above.
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Simple linear regression



Simple linear regression

• Assume a model:

Y = β0 + β1X + ε,

where β0 and β1 are two unknown constants that represent the intercept and slope,
also known as coefficients or parameters, and ε is the error term.

OLS Assumption No. 1: Linearity
The regression model is linear in the coefficients and the error term

• Linearity: a one unit change in X has the same effect on Y , regardless of the initial
value of X (Note: unrealistic for many applications)

• To obtain reliable estimates β̂0 and β̂1 of β0 and β1 from a random sample, we first
need to make assumptions about the error term. (Note: The hat symbol denotes an
estimated value.)
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The role of the error term - I

• In general: the error term accounts for the variation in the dependent variable that is
not captured by the independent variable, i.e. it accounts for not-predictable variation.

OLS Assumption No. 2: Zero Mean
The error term has a population mean of zero. That is E(ε) = 0.

• Intuition: If the error term has mean zero this implies that the regression coefficients
are unbiased.

• Imagine the average error is -5: We systematically over predict the independent
variable and the model is misspecified. Part of the error term is predictable, which
should be added to the regression model

• Note: β0 ensures that the mean of the error terms is always zero.
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The role of the error term - II

OLS Assumption No. 3.1: Independence/ Exogeneity Assumption
All independent variables are uncorrelated with the error term

• Intuition: If violated, we can use the independent variable to predict the error term.
Thus the model is misspecified.

• Violations are due to omitted variables or measurement errors in the independent
variables.

• Regression estimates are biased, as the OLS incorrectly attributes some of the
variance of the error term to the independent variable
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The role of the error term - III

• Note that for time series data (as opposed to cross sectional data), you need to ensure
the following condition:

OLS Assumption No. 3.2: No serial auto-correlation
The observations of the error term are uncorrelated with each other, that is
cov(εt , εt−1) = 0

• Intuition: Observations of the error term should not predict each other.
• Positive serial auto-correlation: a positive error is followed by a positive error (vice versa

for a negative error)
• Negative serial auto-correlation: a positive error is followed by a negative error (vice versa

for a negative error)

• As before, if there are possibilities to predict the error term than this should be
incorporated into the model
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Simple linear regression

Coefficient estimation and accuracy



SLR – Coefficient estimation and accuracy

• Now let there be n observations and ŷ = β̂0 + β̂1xi be the prediction for Y based on
the ith value of X. Then ei = yi − ŷi represents the ith residual.

• Define the residual sum of squares (RSS) as:

RSS = e21 + e22 + ...+ e2n

or equivalently

RSS = (y1 − β̂0 − β̂1x1)2 + (y2 − β̂0 − β̂1x2)2 + ...+ (yn − β̂0 − β̂1xn)2

• Then choose β̂0 and β̂1 to minimize the RSS:

min
β̂0,β̂1

Q =

n∑
i=1

(yi − β̂0 − β̂1xi)2 (1)
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SLR – Coefficient estimation and accuracy

• Build First Order Conditions from 1:

∂Q
∂β̂0

=
n∑

i=1
−2(yi − β̂0 − β̂1xi) = 0 (2)

∂Q
∂β̂1

=

n∑
i=1

−2xi(yi − β̂0 − β̂1xi) = 0 (3)

• solving for β̂0 and β̂1 leads to:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

cov(X ,Y )

var(X)
(4)

β̂0 = ȳ − β̂1x̄,

where ȳ ≡ 1
n
∑n

i=1 yi and x̄ ≡ 1
n
∑n

i=1 xi are the sample means.
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SLR – Coefficient estimation and accuracy
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Figure 1: For the Advertising data, the least squares fit for the regression of sales onto TV is shown. The fit is found by
minimizing the residual sum of squares. Each grey line segment represents a residual. In this case a linear fit captures the essence
of the relationship, although it overestimates the trend in the left of the plot. Also shown: Contour and three-dimensional plots of
the RSS on the Advertising data, using sales as the response and TV as the predictor. The red dots correspond to the least
squares estimates β̂0 and β̂1.
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SLR – Coefficient estimation and accuracy

• Given the estimated parameter, we can interpret them as followed:
• β0 : expected value of Y , when X = 0
• β1 : average increase of Y when X increases by one unit

• BUT: how accurate are our estimates that we obtained from (4)?
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SLR – Coefficient estimation and accuracy

• True relationship: Y = f (X) + ε, where f (X) = 2+ 3X
• Create 100 random X and generate 100 random Y ’s
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Figure 2: Left: Red line represents the true relationship(population regression line). The blue line is the least squares line; it
is the least squares estimate for f (X). Right: Population regression line again in red, and the least squares line in dark blue. In
light blue, ten least squares lines are shown, each computed on the basis of a separate random set of observations. Each least
squares line is different, but on average, the least squares lines are quite close to the population regression line. 12



SLR – Coefficient estimation and accuracy

• The OLS estimates are said to be unbiased, i.e. they do not systematically over- or
under-estimate the true parameters.

• BUT: Given one set of observations, β̂0 and β̂1 might over or understate β0 and β1,
respectively (see figure before).

• To establish a measure that captures the variation of the estimates across samples we
need the following assumption:

OLS Assumption No. 4: Homoskedasticity
The error term ε has the same variance given any value of the explanatory variable. Said
differently: var(ε | X) = σ2

• Intutition:
• The linear regression model estimates the parameters in such a way that it will fit as many

data points as possible.
• With heteroskedastic data, some points are more spread-out than others. As in OLS all

points are treated the same, it will drag the regression curve towards those with higher
variance. 13



SLR – Coefficient estimation and accuracy

• Then use the standard error of the estimate to determine how close the estimates are
to the true parameters, i.e. to asses the accuracy of the estimate:

SE(β̂1)
2 =

σ2∑n
i=1(xi − x̄)2

, (5)

SE(β̂0)
2 =

σ2

n
+

x̄2∑n
i=1(xi − x̄)2

, (6)

where σ2 = var(ε) and where an unbiased estimate for var(ε) is given by
RSS
n−2 = 1

(n−2)
∑n

i=1 ε̂i

• Interpretation: The standard error represents the average amount by which the
estimate (i.e., β̂0 or β̂1) differ from the true values (i.e., β0 and β1), respectively.
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SLR – Coefficient estimation and accuracy

• So far we know the first two moments of our estimates β1 and β2. However, to perform
statistical inference, we need to know the exact distribution of the two estimates.

OLS Assumption No. 5: Normality Assumption
The error term ε is independent of the explanatory variables x1, x2, ..., xn and is normally
distributed with mean zero and variance σ2: ε ∼ N (0, σ).

• Intuition:
• Note that the error term captures multiple disturbances that are not measurable and thus

are not included in the model.
• Further these disturbances are additive, as we assume a linear, additive model. Recall that

the Central Limit Theorem (CLT) states that if there are a large number of i.i.d. variables,
then their sum tends to be normally distributed.
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SLR – Coefficient estimation and accuracy

• Under the assumptions 1-5, we can compute:
• Confidence Intervals
• Hypothesis Tests

• Confidence Intervals
• For example, the 95% confidence interval is approximately given by:

β̂1 ± 2× SE(β̂1)

• There is approximately a 95% chance that the interval will contain the true value of β1.
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SLR – Coefficient estimation and accuracy

• Hypothesis Tests
• H0 : There is no relationship between X and Y, i.e. (β1 = 0)
• HA : There is some relationship between X and Y, i.e. (β1 6= 0)

Note: if β1 = 0, then the model reduces to Y = β0 + ε and X is not associated with Y .
• To test the null hypothesis, we compute a t-statistic, given by:

t = β̂1 − 0
SE(β̂1)

• This will have a t-distribution with n − 2 degrees of freedom, assuming β1 = 0
• Using statistical software, it is easy to compute the probability of observing any value

equal to |t| or larger. We call this probability the p-value.
⇒ Always remember: If p-values are low, H0 must go.
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SLR – Coefficient estimation and accuracy

A small example...
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Figure 3: The density function for the N(0, 1) distribution, with the vertical line indicating a value of 2.33. 1% of the area
under the curve falls to the right of the vertical line, so there is only a 2% chance of observing a N(0, 1) value that is greater than
2.33 or less than −2.33. Therefore, if a test statistic has a N(0, 1) null distribution, then an observed test statistic of T = 2.33
leads to a p-value of 0.02. 18



SLR – Coefficient estimation and accuracy Review

Looking at the advertising data, recall the model: sales = β0 + β1 × TV+ ε

Results:

Coefficient Std. error t-statistics p-value
Intercept 7.0325 0.4578 15.36 <0.0001
TV 0.0475 0.0027 17.76 <0.0001

Table 1: For the Advertising data, coefficients of the least squares model for the regression of number of units sold on TV
advertising budget.

Questions:

a) Provide an interpretation of each coefficient in the model (Recall that sales is in thousands).
b) Interpret the standard error for β1.
c) Refer back to formula (5) above: explain how σ2, n and an increase in (xi − x̄)2 impacts the

standard error.
d) For which of the predictors can you reject the null hypothesis H0 : βj = 0, using α = 5%?

19



Multiple linear regression



Multiple linear regression

• In practice we often need more than one predictor.
• We can extend our Simple Linear Regression model to account for more variables that

affect our response Y .

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε, (7)

• Here we interpret βj as the average effect on Y of a one unit increase in Xj , holding all
other predictors fixed.

• For our advertising example, the model is then:

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε

20



Multiple linear regression

Coefficient estimation



Multiple linear regression

• To obtain valid estimates in the MLR setting, we need to clarify the relationship of
the independent variable among each other:

OLS Assumption No. 6: No Perfect Collinearity in the MLR model
There is no perfect collinearity among the independent variables, i.e. no independent
variable is a perfect linear combination of all the others.

• Intuition:
• Perfect collinearity appears when one variable moves in perfect unity to the other variable

- think Fahrenheit and Celcius.
• OLS then cannot distinguish between these two variables and will not be able to provide

an estimate.
• Even when correlations among independent variables are less than perfect (e.g. ±0.7),

OLS will have problems.
• The variance of all coefficients tends to increase, sometimes dramatically.
• Interpretations become hazardous - when Xj changes, everything else changes.
• What to do? ⇒Later more! 21



MLR – Coefficient estimation

• As before, we estimate β0, β1, ..., βp as the values that minimize the sum of squared
residuals:

RSS =
n∑

i=1
(yi − ŷi)2 (8)

=

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂1xi2 − ...− β̂pxip)2 (9)

• Using matrix notation and algebra, the vector of regression parameters is given as:

β̂ = (X ′X)−1X ′y

• Note that all assumptions and intuitions from the SLR model transfer naturally to the
MLR model.

22



MLR – Coefficient estimation

Sales

Radio

TV

Figure 4: In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a
plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the
plane.
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MLR – Coefficient estimation Review

Recall the model: sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε

Coefficient Std. error t-statistics p-value
Intercept 2.939 0.3119 9.42 <0.0001
TV 0.046 0.0014 32.81 <0.0001
radio 0.189 0.0086 21.89 <0.0001
newspaper -0.001 0.0059 -0.18 0.8599

Table 2: For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold
on TV, radio, and newspaper advertising budgets.

Questions:

a) Provide an interpretation of the coefficient for radio in the model.
b) Provide an approximate 95% Confidence Interval for the TV coefficient and interpret the results.
c) For which of the predictors can you reject the null hypothesis H0 : βj = 0, using α = 5%?
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MLR – Coefficient estimation Review

Now assume you run the following model: sales = β0 + β1 × newspaper+ ε

Coefficient Std. error t-statistics p-value
Intercept 12.351 0.621 19.88 <0.0001
newspaper 0.055 0.017 3.30 0.00115

Table 3: Summary results for the simple linear regression of number of units sold on newspaper.

Questions:

a) Given your results for the simple and the multiple linear regression from the previous slide.
What can you say about the association between newspaper and sales.
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Model selection

• Given our fitted model, we need to answer some important questions:
1. How well does the model fit the data?
2. Is at least one of the predictors X1, X2, ..., Xp useful in predicting the response?
3. Do all of the predictors help to explain Y , or is only a subset of the predictors useful?
4. Given a set of predictor values, what response values should we predict and how accurate

is our prediction?
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Model selection – Q1

Q1: How well does the model fit the data?

1. Residual Standard Error (RSE)
• The RSE is an estimate of the standard deviation of ε:

RSE =

√
1

n − p − 1RSS =

√√√√ 1
n − p − 1

n∑
i=1

(yi − ŷi)2

where RSS =
∑n

i=1(yi − ŷi)2 are the residual sum-of-squares.
• Key points:

• Absolute measure of lack of fit, measured in the units of Y .
• Low RSE indicates a better model.
• Interpretation: The RSE represents the average amount that the response Y will deviate from

the true regression line, measured in the units of Y .
• Change in RSE depends on the trade-off between RSS and 1

n−p−1
• Adding a parameter that only slightly reduces RSS, might lead to a higher RSE.
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Model selection – Q1

2. R-Squared
• The R-Squared measures the fraction of variation that is explained by the model.

R2 =
TSS − RSS

TSS = 1− RSS
TSS

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares.
• Note: For simple linear regression:

R2 = r2 = (
Cov(X ,Y )

STD(X)× STD(Y )
)2

• Key points:
• R2 ∈ [0, 1]
• A good R2 depends on the problem at hand (e.g., in physics, for which we know that some

relationships are linear, the R2 should be close to 1)
• R-squared increases as we add more parameters, even though they might only be weakly

associated with the response.
• Why?: Because, adding another variable always results in a decrease in the training RSS.
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Model selection – Q1 Review

Example:
Model 1: sales = β0 + β1 × TV+ β2 × radio+ ε

Model 2: sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε

R2 RSE
Model 1 0.89719 1.681
Model 2 0.8972 1.686

Questions:

a) Explain the changes in the R2 and RSE between Model 1 and Model 2. What can you
infer from the values about the newspaper variable?
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Model selection – Q2

Q2: Is at least one of the predictors X1, X2, ..., Xp useful in predicting the response?

• Recall the model:

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε (10)

• Now test, if a group of variables have no impact on Y , once we have controlled for the
other variables

• For example: radio and newspaper have no effect on sales, once we accounted
(i.e. included) for TV in the model.

• In mathematical terms:

H0 : β2 = 0, β3 = 0 vs. HA : H0 is not true (11)

• If the hypothesis cannot be rejected, then radio and newspaper should be dropped
from the model.
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Model selection – Q2

• How should we test hypothesis (11)?
• It might be tempting to use a t-test, but as we will see we actually need to use a so-called

F-Test

• Why do we need to use a F-Test, when we can just perform a t-test on each single
variable?

• Consider p = 100 and assume H0 : β1 = β2 = β3 = βp = 0 in reality is true.
• Now you perform a t-test for each variable at α = 5%
• By chance: 5% of the p-values will be below 5%, i.e. we expect to see 5 small p-values and

incorrectly conclude that these 5 parameters characterize the model (i.e. they would be
added to the model)

• This is a problem of Multiple Testing, which we will cover in a later lecture.
• For now: the F-Test does not suffer from this problem, as it adjusts to the number of

parameters used.
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Model selection – Q2

• The F-Test is based on the Residual Sum of Squares (RSS) of the model with all
parameters (unrestricted model) and without the parameters (restricted model) (in
the example above without β2 & β3).

• Intuition: When the RSS of the restricted model is much larger than the RSS of the
unrestricted model, the null hypothesis has to be rejected.

• In general:
• If we only want to test, whether a subset of q of the coefficients are zero, i.e.:

H0 : βp−q+1 = βp−q+2 = ... = βp = 0 vs.
HA : at least one of the p − 1 coefficients is non-zero

• Fit a second model that uses all the variables except those q and define the RSS of that
model as RSS0, then the F-statistics is:

F =
(RSS0 − RSS)/q
RSS/(n − p − 1) with F ∼ Fq,n−p−1

• Note that the F-Statistic disregarding the qth variable is equal to the squared t-statistics of
that variable. It reports the partial effect of adding this variable to the model.
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Model selection – Q2

Figure 5: The F-Distribution and Table for various degrees of freedom. Source:
http://www.statistics4u.info/fundstat_germ/cc_distri_fisher_f.html and https:
//www.oreilly.com/library/view/making-sense-of/9780470074718/appa-sec004.html
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Model selection – Q2

• If we want to test, whether any of the independent variables are associated with the
response, then we can perform a general F-Test

• That is:
H0 : β1 = β2 = ... = βp = 0 vs. HA: at least one βj is non-zero

• And the F-Test Statistic is given by:

F =
(TSS − RSS)/p
RSS/(n − p − 1)

=
R2/p

(1− R2)/(n − p − 1)
∼ Fp,n−p−1

• F-Statistic close to 1: No relationship between response and predictors.
• If HA is true then the F-statistics is greater than 1.
• When is the F-Statistic large enough?

• Depends on n and p. Larger F-Statistic is needed when n is small relative to p (see
previous slide).

• Statistical software can be used to obtain the p-value for the F-Statistic.
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Model selection – Q2 Review

Recall the model: sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper+ ε

Quantity Value
Residual Standard Error 1.69
R2 0.897
F-statistics 570

Questions:

a) Provide an interpretation of the RSE of the model.

b) Provide an interpretation of the R2 of the model.

c) Can you reject the null hypothesis that all coefficients are equal to zero?
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Model selection – Q3

Q3: Do all of the predictors help to explain Y, or is only a subset of the predictors useful?

• Very often the response is only associated with a subset of all the predictors p.
• Selecting only those predictors with are associated with the response is called variable
selection

• Three methods:
1. All subset or Best subset regression
2. Forward Selection
3. Backward Selection

• More on these methods in Lecture 06 - Model Selection
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Model selection – Q4

Q4: Given a set of predictor values, what response values should we predict and how
accurate is our prediction?

• Having fit the model, we can make a prediction for Y on the basis of X1,X2, ...,Xp

• Three sorts of uncertainty:
1. The estimated model is only an estimate of the true population regression line.
2. Model Bias: Assuming a linear model might be too simplistic to capture the real-life

dependencies
3. Even if we knew the true f (x) the response Y cannot be predicted perfectly, due to ε.

Remember Lecture 1: this is the irreducible error.
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Model selection – Q4

Example:

• Recall the model: sales = β0 + β1 × TV + β2 × radio + ε

• How much will Ŷ vary from Y ?
1) Assume $10 0000 is spent on TV, and $20 000 is spent on radio in each city:

• Forecasted Value: 11 256 units sold (from the model)
• 95% Confidence Interval (CIs): [10985, 11528]

2) Assume $10 0000 is spent on TV, and $20 000 is spent on radio in one city:
• Forecasted Value: 11 256 units sold (from the model)
• 95% Prediction Interval (PIs): [7930, 14580]

• Prediction Intervals are always wider than Confidence Intervals, as they incorporate
both: the reducible and the irreducible error.

• Note: Computing CIs and PIs for the response is tedious to do by hand and should
normally be done using a statistical software.
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Next steps

• Until now, we looked at Simple and Multiple Linear Regression models.
• We now turn to topics that apply to both model set-ups:

• Qualitative Predictors
• Extensions to the Linear Models
• Potential Problems of Linear Models

39



Qualitative predictors



Qualitative predictors

• Some predictors are not quantitative, but are qualitative, i.e. they take a discrete set
of values.

• These are also called categorical predictors or factor variables.
• See for example the scatterplot matrix of the credit card data in the next slide.
• The response is balance (average credit card debt for each individual)
• In addition to the seven quantitative variables shown, there are four qualitative

variables: own (house ownership), student (student status), status (martial
status), and region (East, West and South).
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Qualitative predictors
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Figure 6: The Credit data set contains information about balance, age, cards, education, income, limit, and
rating for a number of potential customers.
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Qualitative predictors

• Example: investigate differences in credit card balance between those who own a
house and those who don’t, ignoring the other variables. We create a new variable:

xi =

{
1, if ith person owns a house
0, if ith person does not own a house

.

• Resulting Credit Model 1:

yi = β0 + β1xi + εi =

{
β0 + β1 + εi, if ith person owns a house
β0 + εi, if ith person does not

.

• Interpretation:
• β0 is the average credit card balance among those who do not own a house
• β0 + β1 is the average credit card balance for those who do own a house
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Qualitative predictors Review

Results for the Credit Model 1:

Coefficient Std. Error t-statistics p-value
Intercept 509.80 33.13 15.389 <0.0001
own[Yes] 19.73 46.05 0.429 0.6690

Table 4: Least squares coefficient estimates for Credit Model 1 associated with the regression of balance onto own in the
Credit data set.

Questions:

a) What is the average credit card balance for those who own a house?

b) What is the average credit card balance for those who do not own a house?

c) Can you reject the null hypothesis H0 : βj = 0 for any of the predictors, using α = 5%?
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Qualitative predictors

• Instead of a 0/1 encoding, we can also create an encoding in the form:

xi =

{
1, if ith person owns a house
−1, if ith person does not own a house

.

• Resulting Credit Model 2:

yi = β0 + β1xi + εi =

{
β0 + β1 + εi, if ith person owns a house
β0 − β1 + εi, if ith person does not

.

• Interpretation:
• β0 is the overall average credit card balance (ignoring house ownership)
• β1 is the amount by which house owners and non-owners have credit card balances that are

above or below the average, respectively
• Homework Questions: Given a specific person, do you expect that the estimated credit

card balances of Credit Model 1 and Credit Model 2 are the same?
44



Qualitative predictors

• With more than two levels, we create additional dummy variables. For example, for
the region variable we create two dummy variables. The first could be

xi1 =

{
1, if ith person is from the South
0, if ith person is not from the South

.

and the second could be

xi2 =

{
1, if ith person is from the West
0, if ith person is not from the West

.
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Qualitative predictors

• Then both of these variables can be used in the regression equation, in order to obtain
the model:

yi = β0 + β1xi1 + β2xi2 + εi =


β0 + β1 + εi, if ith person is from the South
β0 + β2 + εi, if ith person is from the West
β0 + εi if ith person is from the East.

.

• There will always be one fewer dummy variable than the number of levels. The level
with no dummy variable — East in this example — is known as the baseline.

• Interpretation
• β0: Average Credit Quality for people from the East.
• β2: Difference in the average balance between those from the West versus the East.

• Adding a separate dummy variable for each level is known as the Dummy Variable
Trap.

46



Qualitative predictors Review

Coefficient Std. Error t-statistics p-Value
Intercept 531.00 46.32 11.464 < 0.001
region[South] -18.69 65.02 -0.287 0.7740
region[West] -12.50 56.68 -0.221 0.8260

Table 5: Least squares coefficient estimates associated with the regression of balance onto region in
the Credit data set.

Questions:

a) What is the average credit card balance for an individual from the East?
b) What is the difference in the average credit card balance for people from the east and the

south? What is the difference between East and West?
c) Are all predictors associated with the response?
d) Explain the meaning of the Dummy Variable Trap.
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Extensions of the linear model

• The Linear Model is interpretable, but makes highly restrictive assumptions (i.e.
additivity and linearity).

• Removing these assumptions leads us to the topics of:
1. Interaction effects
2. Non-linearity

48



Extensions of the linear model

Interaction



Extensions of the linear model – Interactions

• In our previous analysis of the Advertising data, we assumed that the effect on sales of
increasing one advertising medium is independent of the amount spent on the other
media.

• For example, the linear model:

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper (12)

states that the average effect on sales of a one-unit increase in TV is always given by
β1, regardless of the amount spent on radio.

• This might be incorrect!

49



Extensions of the linear model – Interactions

• But suppose that spending money on radio advertising actually increases the
effectiveness of TV advertising, so that the slope term for TV should increase as radio
increases.

• In this situation, given a fixed budget of $100, 000, spending half on radio and half
on TV may increase sales more than allocating the entire amount to either TV or to
radio.

• In marketing, this is known as a synergy effect, and in statistics it is referred to as an
interaction effect.
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Extensions of the linear model – Interactions

Sales

Radio

TV

Figure 7: When levels of either TV or radio are low, then the true sales are lower than predicted by
the linear model.But when advertising is split between the two media, then the model tends to
underestimate sales.
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Extensions of the linear model – Interactions Review

• Model takes the form:

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio× TV) + ε

= β0 + (β1 + β3 × radio)× TV+ β2 × radio+ ε

• Results:

Coefficient Std. Error t-statistics p-value
Intercept 6.7502 0.248 27.23 <0.001
TV 0.0191 0.002 12.70 <0.0001
radio 0.0289 0.009 3.24 0.0014
TV × radio 0.0011 0.000 20.73 <0.0001
R2 0.968
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Extensions of the linear model – Interactions Review

Questions:

a) Using α = 5%, can you conclude that the interaction term represents a valid component in the
model?

b) What is the interpretation of the interaction term?

c) How many units will you sell, if you invest $1000 in TV advertising?

d) Assume that R2 = 0.897 for a standard model that only regresses sales on TV and radio, but
does not include an interaction effect. How much of the unexplained variation from the
standard model can be explained, when we include an interaction term?
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Extensions of the linear model – Interactions Review

• Answers:
a) The p-value for the interaction term TV× radio is extremely low, indicating that there is

strong evidence for HA : β3 6= 0.
b) Interpret β3 as the increase in the effectiveness of TV advertising, associated with a

one-unit increase in radio advertising (and vice versa).
c) The coefficient estimates in the table suggest that an increase in TV advertising of $1, 000

is associated with increased sales of (β̂1 + β̂3 × radio)× 1000 = 19+ 1.1× radio units
An increase in radio advertising of $1, 000 will be associated with an increase in sales of
(β̂2 + β̂3 × TV)× 1000 = 29+ 1.1× TV units.

d) The R2 for the interaction model is 96.8%, compared to only 89.7% for the model that
predicts sales using TV and radio without an interaction term.
This means that (96.8− 89.7)/(100− 89.7) = 69% of the variability in sales that remained
after fitting the additive model has been explained by the interaction term.
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Extensions of the linear model – Interactions

• Sometimes an interaction term has a very small p-value, but the associated main
effects (in this case, TV and radio) do not.

The hierarchy principle
If we include an interaction in a model, we should also include the main effects, even if
the p-values associated with their coefficients are not significant.

• The rationale for this principle is that interactions are hard to interpret in a model
without main effects — their meaning is changed.

• Specifically, the interaction terms also contain main effects, if the model does not
include any main effect terms.
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Extensions of the linear model – Non-linearity

• Sometimes the relationship between the response and the predictor is non-linear (see
next slide).

• We can account for the non-linear relationship by estimating the following model and
considering a higher order polynominal:

mpg = β0 + β1 × horsepower+ β2 × horsepower2 + ε

Coefficient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

Table 6: For the Auto data set, least squares coefficient estimates associated with the regression of mpg onto horsepower
and horsepower2.
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Extensions of the linear model – Non-linearity
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Figure 8: The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression fit is shown in
orange. The linear regression fit for a model that includes horsepower2 is shown as a blue curve. The linear regression fit for a
model that includes all polynomials of horsepower up to fifth-degree is shown in green.
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Potential problems of linear models

• When we fit a linear regression model to a particular data set, many problems may
occur.

• These include:
1. Non-linearity of the response-predictor relationships (Failure of OLS Assum. No. 1)
2. Correlation of error terms (Failure of OLS Assum. No. 3.1)
3. Non-constant variance of error terms (Heteroskedasticity) (Failure of OLS Assum. No. 4)
4. Collinearity (Failure of OLS Assum. No. 6)

• We will discuss each of these points in turn.
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Non-linearity

• If the true relationship is non-linear, then using a linear regression model leads to false
conclusions.

• Residual plots are a useful tool for identifying non-linearity.
• Given a simple linear regression model, plot: ei = yi − ŷi vs. xi.
• In a multiple linear regression model plot the residual vs. the fitted values ŷi.
• Ideally the residual plot shows no discernible pattern.
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Non-linearity
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Figure 9: Plots of residuals versus predicted (or fitted) values for the Auto data set. In each plot, the red line is a smooth fit
to the residuals, intended to make it easier to identify a trend. Left: A linear regression of mpg on horsepower. A strong
pattern in the residuals indicates non-linearity in the data. Right: A linear regression of mpg on horsepower and
horsepower2. There is little pattern in the residuals.
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Correlation of error terms

• We assume that ε1, ε2, ..., εn are uncorrelated.
• This means that the sign of εi does not provide any information about εi+1.
• Standard errors rely on this assumption. If violated: ŜE will underestimate SE

(Unwarranted Sense of Confidence)
• Time series data often exhibit correlation among the error terms.
• Cross Sectional data: Consider a study which predicts individuals height from their

weight.
• How to deal with autocorrelation?

• Adding further variables as independent variables
• Experimenting with model specifications

⇒ Many methods have been developed (out of scope for this course!)
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Correlation of error terms
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Figure 10: Plots of residuals from simulated time series data sets generated with differing levels of correlation ρ between
error terms for adjacent time points. 62



Heteroskedasticity

• We assume homoskedasticity: var(ε | X) = σ2

• Often the variance of the error term increases with the response (called conditional
heteroskedasticity)

• This is a problem, as standard errors for the coefficients will not be accurate (can be
higher or lower): This affects HT and CI

• How to detect?
• The residual plot has a funnel shape (see next slide)

• How to deal with heteroskedasticity?
• Transform the response to log(Y ) or

√
Y .
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Heteroskedasticity
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Figure 11: Residual plots. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a
trend. The blue lines track the outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape indicates
heteroscedasticity. Right: The response has been log transformed, and there is now no evidence of heteroscedasticity.
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Collinearity

• Collinearity: two or more predictors are closely related.
• If present, its difficult to separate out the different effects of each variable on the

response.
• Collinearity reduces the accuracy of β̂j , so its SE ↑: This affects HT and CI.
• How to detect collinearity?

• For two variables: Look at the correlation matrix (values above 0.7 are problematic)
• For three or more: Compute the Variance inflation factor (VIF):

VIF(β̂j) =
1

(1− R2
Xj |X−j

)

with R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other predictors. If R2
Xj |X−j

is
close to one, then we have collinearity.

• How to deal with collinearity?
• Drop one of the problematic variables (Note: statistical vs. economic validity).
• Combine the two problematic variables into a new one.
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Collinearity
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Figure 12: Scatterplots of the observations from the Credit data set. Left: A plot of age versus limit. These two variables
are not collinear. Right: A plot of rating versus limit. There is high collinearity.
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Collinearity
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Figure 13: Contour plots for the RSS values as a function of the parameters β for various regressions involving the Credit
data set. In each plot, the black dots represent the coefficient values corresponding to the minimum RSS. Left: A contour plot of
RSS for the regression of balance onto age and limit. The minimum value is well defined. Right: A contour plot of RSS for the
regression of balance onto rating and limit. Because of the collinearity, there are many pairs (βLimit , βRating) with a similar value
for RSS.
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Collinearity

Figure 14: The results for two multiple regression models involving the Credit data set are shown. Model 1 is a regression of
balance on age and limit, and Model 2 a regression of balance on rating and limit. The standard error of β̂Limit increases 12-fold
in the second regression, due to collinearity.
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Examples Review

True or False?:

a) Given correlated error terms, the estimated coefficients standard error will be
higher than the true coefficients standard errors.

b) In the simple linear regression model, we assume that the variance of the error
terms changes with the response variable.

c) Collinearity refers to the situation, in which two variables are highly correlated
with each other.

d) Given highly correlated predictors, the confidence intervals for an estimated
coefficient will be larger, as compared to a situation, in which the predictors are not
highly correlated.

e) One solution to the problem of heteroskedasticity is to transform the response
variable, for example, by taking its logarithm.
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Examples Review

True or False?:

a) F Given correlated error terms, the estimated coefficients standard error will be
higher than the true coefficients standard errors.

b) F In the simple linear regression model, we assume that the variance of the error
terms changes with the response variable.

c) T Collinearity refers to the situation, in which two variables are highly correlated
with each other.

d) T Given highly correlated predictors, the confidence intervals for an estimated
coefficient will be larger, as compared to a situation, in which the predictors are not
highly correlated.

e) T One solution to the problem of heteroskedasticity is to transform the response
variable, for example, by taking its logarithm.
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Disclaimer: This material has been prepared by Philipp Kremer and Constantin Lisson in 2021 and draws very
extensively on:

• James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to statistical learning and the
corresponding lecture slides available from these authors.

Slides 4-7, 14 and 17 draw heavily from:

• Wooldridge J. (2012), Introductory Econometrics: A Modern Approach, Ch. 2, Ch. 3.3 and Ch. 3.4, 5th
Edition, Cengage Learning, Inc.

• https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/

Slides 32 and 34 draw heavily from:

• Wooldridge J. (2012), Introductory Econometrics: A Modern Approach, Ch. 4.5, 5th Edition, Cengage
Learning, Inc.
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Homework Exercises



Model Selection Review

Looking at the Advertising data, recall the model: sales = β0 + β1 × TV+ ε

Quantity Value
Residual Standard Error 3.26
R2 0.612
F-Statistics 312.1

Table 7: Model Accuracy Measures for the Advertising data.

Questions:

a) Interpret the value of the RSE for the model.

b) Interpret the value of the R2 for the model. Does the R2 imply that the model is reasonably
specified?

c) What is the correlation between sales and TV?
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Qualitative Predictors Review

Assume that you estimate the following model for credit card balances (Credit Model 2):

yi = β0 + β1xi + εi =

{
β0 + β1 + εi, if ith person owns a house
β0 − β1 + εi, if ith person does not

.

with the following coefficient values:

Coefficient
Intercept 519.665
own[Yes] 9.865

Questions:

a) What is the overall average credit card balance for an individual, independent of their house
ownership?

b) What is the credit card balance for a person that owns a house? What is the credit card
balance for an individual if he/she does not own a house?

c) Does the credit card balance for a house owner from Credit Model 1 (see slide 43) differ from
that of Credit Model 2? 72



Solutions to review and
homework questions



Solutions to review questions

Review questions from Slide 19

a) β0: When there is no investment into TV advertising, the expected units sold equal 7032 units.
β1: If we invest another $1000 into TV advertising, sales will increase by 47.5 units
(0.0475× $1000).

b) On average, we deviate from the true coefficient value β1 by 2.7 units (0.0027 ×$1000).

c) The standard error of the estimate increases with the variance of the error term σ2, as more
random noise makes it harder for OLS to uncover the true relationship between X and Y . At
the same time the standard error decreases as we increase the number of observations to train
our model, as we include more observation for the estimation. Furthermore, the standard error
also decreases, the higher the variability in the independent variable X , as this makes it easier
for OLS to uncover the relationship between X and Y .

d) Assuming α = 5%, we reject H0 : βj = 0 for all of the coefficients, as all p-values ≤ α.
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Solutions to review questions

Review questions from Slide 24:

a) Listed are all interpretations for completeness:
β0: When there is no investment into TV, radio or newspaper advertising, the expected units
sold equal 2939.
β1: If we invest another $1000 into TV advertising, sales will increase by 46 units
(0.046× $1000).
β2: If we invest another $1000 into radio advertising, sales will increase by 189 units
(0.189× $1000).
β3: If we invest another $1000 into newspaper advertising, sales will decrease by 1 unit
(−0.001× $1000).

b) Approximate 95% CI: 0.046± 2× 0.0014 = 0.046± 0.0028 = [0.0432, 0.0488]. Interpretation:
We can be 95% confident that the true value for β1 is between 0.0432 and 0.0488.

c) Assuming α = 5%, we reject H0 : βj = 0 for all, but the newspaper coefficient, as only for the
newspaper coefficient all p-values > α.
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Solutions to review questions

Review questions from Slide 25:

a) In the simple linear regression model, the newspaper coefficient serves as a surrogate for the
effect that radio has on sales. In fact, the correlation between newspaper and radio is 0.3541
(see page 75 of the book). Adding the radio predictor to the model - as it is the case in the
multiple linear regression model - eliminates the effect of newspaper on sales, rendering the
newspaper variable insignificant.
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Solutions to review questions

Review questions from Slide 29:

a) By adding the newspaper variable to the model, the R2 increases as the additional variable
reduces the RSS. Nevertheless, the RSE increases as the reduction in RSS is smaller than the
reduction in the denominator of the RSS.
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Solutions to review questions

Review questions from Slide 35:

a) Predicted sales in each market will deviate from the true regression line on average by
approximately 1690 units.

b) 89.7% of the variation in the response variable is explained by the regression model.

c) Here the F-Statistic is 570, which is much larger than 1 and consequently, we can reject the null
hypothesis that all regression coefficients are equal to zero. Note: In the exam we would provide
you with the p-value, which in this example is equal to zero. Thus assuming alpha = 5% and
given a p-value of zero, we would again reject the null hypothesis as p − value ≤ α.

77



Solutions to review questions

Review questions from Slide 43:

a) β0 + β1 = 509.80+ 19.73 = 529.53

b) β0 = 509.80

c) Assuming α = 5%, we do not reject the null hypothesis for β1, as the p-value > α.
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Solutions to review questions

Review questions from Slide 47:

a) β0 = 531.00

b) Difference East vs. South: β1 = −18.69
Difference East vs. West: β2 = −12.50

c) No, assuming α = 0.05 the p-values for β1 and β2 are both larger than 0.05, thus indicating that
those predictors can be dropped from the model. Consequently, there is no statistical evidence
for a difference in the credit card balance given different regions.

d) The Dummy Variable Trap refers to the situation in which we include for each level an own
dummy variable, leading to the problem of perfect multicollinearity between the predictors. In
this situation one of the variables can be perfectly predicted by the other.
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Solutions to review questions

Review questions from Slide 52:

a) The p-value for the interaction term TV×radio is extremely low, indicating that there is strong
evidence for HA : β3 6= 0.

b) Interpret β3 as the increase in the effectiveness of TV advertising, associated with a one-unit
increase in radio advertising (and vice versa).

c) For TV: The coefficient estimates in the table suggest that an increase in TV advertising of
$1, 000 is associated with increased sales of (β̂1 + β̂3 × radio)× 1000 = 19+ 1.1× radio units
For radio: An increase in radio advertising of $1, 000 will be associated with an increase in sales
of (β̂2 + β̂3 × TV )× 1000 = 29+ 1.1× TV units.

d) The R2 for the interaction model is 96.8%, compared to only 89.7% for the model that predicts
sales using TV and radio without an interaction term. This means that
(96.8− 89.7)/(100− 89.7) = 69% of the variability in sales that remains after fitting the
additive model has been explained by the interaction term.
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Solutions to review questions

Review questions from Slide 71:

a) Predicted sales in each market will deviate from the true regression line on average by
approximately 3260 units.

b) 61.2% of the variation in the response variable is explained by the regression model. If this
represents a good R2 depends on the problem at hand.

c) r =
√
R2 =

√
0.612 = 0.7823
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Solutions to review questions

Review questions from Slide 72:

a) β0 = 519.665

b) House Owner: β0 + β1 = 519.665+ 9.865 = 529.53
Non house owner: β0 − β1 = 519.665− 9.865 = 509.80

c) No, the final balances are the same regardless if we use Credit Model 1 or Credit Model 2.
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This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.
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