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What is model selection?

• So far, we have fit linear models using least squares.
• Extensions are possible in the direction of

• using nonlinear models or
• using fitting procedures other than least squares
• or both.

• This lecture is about improving linear models with alternative fitting procedures that
are jointly referred to as linear model selection.
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We focus on two classes of model selection methods

Let p be the number of predictors/independent variables/features/inputs1 in a linear model
of the type Y = β0 + β1X1 + · · ·+ βpXp + ε.

1. Subset selection methods
Select a subset of the p predictors. Then estimate the reduced model using least squares.

2. Shrinkage/regularization methods
Estimate the model on all p predictors using a fitting procedure that shrinks coefficients
towards zero. Some such methods set very small coefficient estimates to zero exactly,
effectively removing variables from the model (variable selection/feature selection).

1Recall that these are all broadly the same—and that so are response/dependent variable/labels/output—but
have different nuances.
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Subset selection methods



Best subset and stepwise model selection

Within the subset selection class of methods, we cover the best subset and the stepwise
model selection methods.
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Subset selection methods

Best subset selection



The best subset selection algorithm

Algorithm

1. Start with a model2 containing no predictors and predicting simply the sample mean
for each observation, so that Y = Ȳ + ε. Call this the null model and represent it by
M0.

2. For k = 1, 2, . . . p:
2.1 Fit all

(p
k

)
models that contain exactly k predictors.3

2.2 Pick from among the
(p
k

)
models the one with the largest coefficient of determination R2

and call it Mk .

3. From among M0, . . . ,Mp, select a single best model using model selection criteria.4

2We will only apply best subset selection for least squares estimation of linear regression models. The method
can be extended to other types of models.
3Recall that the binomial coefficient

(p
k
)
= p!

k!(p−k)! , which should help you recall that this number can get large.
4Cp, AIC, BIC, and adjusted R2 (see Slide 18). For now, it is enough that these are goodness-of-fit measures.
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Example: Best subset selection applied to Credit data set
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Figure 1: For each possible model containing a subset of the predictors in the Credit data set, the
RSS and R2 are displayed.
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Best subset selection Review

Fill in the blanks

1. The number of total predictors in the original dataset is denoted by .
2. The model containing none of the predictors is called the .
3. The higher the residual sum of squares (RSS), the the model’s fit.

True or false?

1. Subset selection methods do not use least squares.
2. The null model (M0) has zero predictors and uses only the mean of the response

variable to predict the response variable.
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Best subset selection Review

Fill in the blanks

1. The number of total predictors in the original dataset is denoted by p.
2. The model containing none of the predictors is called the null model.
3. The higher the residual sum of squares (RSS), the worse the model’s fit.

True or false?

1. F Subset selection methods do not use least squares. Subset selection methods do not
use least squares on the full set of predictors. They do use least squares on a subset of
predictors.

2. T The null model (M0) has zero predictors and uses only the mean of the response
variable to predict the response variable.

7



Subset selection methods

Stepwise selection



Problems with best subset selection (1/2)

Combinatorial explosion

If best subset selection estimates all possible models of a given size, why can’t we always
use it?

• For each value of k = 1, 2, . . . , p, the best subset selection algorithm estimates
(p
k
)

models, for a sum total of
∑p
k=1

(p
k
)
= 2p − 1 models.

• This is only computationally feasible for a small or moderate number of total
predictors p because of combinatorial explosion.

p 0 1 2 3 5 10 25 100 300 …

2p − 1 0 1 3 7 31 1,023 33,554,431 1.27× 1030 2× 1090 …

Table 1: Combinatorial explosion in the best subset selection algorithm. There are about 6× 1079

atoms in the universe.
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Problems with best subset selection (2/2)

Overfitting

• When p is large, best subset selection is more likely to lead to overfitting.
• This leads to a high variance of the coefficient estimates.
• For this reason, and because of the combinatorial explosion discussed on the previous

slide, best subset selection is not always suitable.

Alternatives

Stepwise selection methods provide algorithms that explore a much smaller set of models,
which helps alleviate these problems.
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The intuition of forward stepwise selection

• Forward stepwise selection starts with the null model M0 and progressively adds
predictors to it until all available predictors have been included.

• At each step, the variable that contributes the most to model fit is added.
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The forward stepwise selection algorithm

Algorithm

1. Start with the null model M0 containing no predictors and predicting simply the
sample mean for each observation, so that Y = Ȳ + ε.

2. For k = 0, . . . , p − 1:
2.1 Consider all p − k models that augment the predictors in Mk by one additional predictor.
2.2 Select from among the p − k candidate models the one with the largest coefficient of

determination R2 and call it Mk+1.

3. From among M0, . . . ,Mp, select a single best model.

Advantages and disadvantages
Stepwise selection is very efficient, but not guaranteed to find the best possible from
among the 2p possible model specifications.
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Example: Best subset and forward stepwise selection

p Best subset selection Forward stepwise selection

1 rating rating
2 rating, income rating, income
3 rating, income, student rating, income, student
4 cards, income, student, limit rating, income, student, limit

Table 2: Variable sets selected using best subset and forward stepwise selection for the Credit data
set for model sizes of p ∈ {1, 2, 3, 4} predictors. The models selected by the two methods are
identical for p ∈ {1, 2, 3} and start to differ for p = 4.
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The intuition of backward stepwise selection

• Backward stepwise selection solves the problems associated with best subset selection
in much the same way that forward stepwise selection does; that is, by operating on a
reduced set of candidate models.

• Instead of proceeding from the null model and adding predictors, backward stepwise
selection begins with the full least-squares model with all p predictors and then
progressively removes predictors.

• At each step, the predictor that contributes the least to model fit is removed.
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The backward stepwise selection algorithm

Algorithm

1. Start with the full model Mp containing all p predictors, so that
Y = β0 + β1X1 + · · ·+ βpXP + ε.

2. For k = p, p − 1, . . . , 1:
2.1 Consider all k models that contain all but one of the predictors in Mk , for a total of k − 1

predictors.
2.2 Select from among the k models the one with the largest coefficient of determination R2

and call it Mk−1.

3. From among M0, . . . ,Mp, select a single best model.
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More on backward stepwise selection

• Like Forward stepwise selection, backward stepwise selection estimates only
1+ p(p + 1)/2 models instead of the 2p models estimated using best subset selection.

• It, too, is not guaranteed to result in the best model containing subsets of the p
predictors.

• Because backward stepwise selection proceeds from the full model where k = p, it
requires that the sample size n be larger than the number of variables p so that the full
model can be estimated. By contrast, forward stepwise selection, which proceeds from
k = 1 can even be used when n < p, in which case k = 1, . . . , p becomes k = 1, . . . ,n.
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Stepwise selection Review

True or false?

1. Stepwise selection and best subset selection will always yield different models for a
given model size p.

2. Stepwise selection and best subset selection will often yield different models for a
given model size p.

3. When best subset selection is computationally feasible, it should be preferred to
stepwise selection.
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Stepwise selection Review

True or false?

1. F Stepwise selection and best subset selection will always yield different models for a
given model size p.

2. T Stepwise selection and best subset selection will often yield different models for a
given model size p.

3. T When best subset selection is computationally feasible, it should be preferred to
stepwise selection.
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Subset selection methods

Choosing the optimal model from
among M0, . . . ,Mp



Choosing the optimal model

• The full model Mp : Y = β0 +
∑p
k=1 βkXk + ε always has the largest R2 because it

includes all information contained in the predictor set.
• The R2 is not a suitable criterion for selecting from a set of models with different

numbers of predictors.
• The inclusion of additional variables always decreases the training error but leads to

overfitting. The training error is not a good estimate of test error, which is what we
really care about.

• Test error can be estimated either indirectly by adjusting the training error to
account for the additional variables or directly using a validation set or
cross-validation approach.
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Estimating test error indirectly

Model selection criteria: Cp, AIC, BIC, and adjusted R2

• Model selection criteria can be used in Step 3 of the best subset selection, forward
stepwise selection and backward stepwise selection algorithms introduced above.5

• They adjust the training error upward to account for model size, for an estimate of
the test error.

5See Slides 5, 11, and 14.
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Example: Model selection criteria the Credit data set.
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Figure 2: Model selection criteria for models produced by best subset selection on the Credit data
set. The cross indicates the number of predictors in the final model selected under each criterion.

19



Definitions of model selection criteria: Cp

Mallow’s Cp

Cp =
1
n
(RSS+ 2dσ̂)

where d is the number of parameters used and σ̂2 is an estimate of the variance of the
error ε associated with each response measurement.

Note that ↑ RSS =⇒ ↑ Cp, so that a high Cp implies a high RSS and thus a poor model
fit.

We select the model with the lowest Cp.
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Definitions of model selection criteria: AIC

Akaike Information Criterion (AIC)

AIC = −2 logL + 2d

where L is the maximized value of the likelihood function for a model estimated using
maximum likelihood.

Note that ↑ L =⇒ ↓ AIC, so that a lower AIC implies a higher likelihood L. Because the
likelihood relates to the probability of drawing the sample obtained for a given set of
parameters, a higher likelihood implies a better fit.

We select the model with the lowest AIC.

In the case of a linear model with Gaussian errors, maximum likelihood and least squares
are equivalent and Cp and AIC lead to identical results.
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Definitions of model selection criteria: BIC

Bayesian Information Criterion (BIC)

BIC =
1
n
(
RSS+ log(n)dσ̂2)

Note that ↑ RSS =⇒ ↑ BIC, so that a high BIC implies a high RSS and thus a poor
model fit. We select the model with the lowest BIC.

BIC replaces the 2dσ̂2 used by Cp with log(n)dσ̂2, where n is the number of observations.
Because log(n) > 2 for n > 7, the BIC generally places a heavier penalty on larger models,
resulting in smaller models than Cp, as can be seen in Figure 2.
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Definitions of model selection criteria: Adjusted R2

Adjusted R2

Adjusted R2 = 1− RSS/(n − d − 1)
TSS/(n − 1)

where TSS is the total sum of squares and the model has been estimated using least
squares.

Note that ↑ RSS =⇒ ↓ Adjusted R2, so that a high Adjusted R2 implies a low RSS and
thus a good model fit. We select the model with the highest Adjusted R2.

Maximizing the adjusted R2 is equivalent to minimizing RSS
n−d−1 . While RSS always

decreases as the number of variables in the model increases, RSS
n−d−1 may increase or

decrease due to the presence of d in the denominator. The adjusted R2 pays a price for the
inclusion of unnecessary variables in the model.
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Direct test error estimates

Validation, cross-validation

• Each of the procedures returns a sequence of models Mk indexed by model size
k = 0, 1, 2, . . . . Our job is to select the optimal number of predictors k̂ and return Mk̂ .

• We compute the validation set error or the cross-validation error for each candidate
model Mk and then select the k for which the estimated test error is smallest.

• This procedure has an advantage relative to Cp, AIC, BIC, and adjusted R2 in that it
provides a direct estimate of the test error, and doesn’t require an estimate of the error
variance σ2.

• It can also be used in a wider range of model selection tasks, even in cases where it is
hard to pinpoint the model degrees of freedom (e.g., the number of predictors in the
model) or hard to estimate the error variance σ2.
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Example: Validation and cross validation
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Figure 3:
√
BIC, validation set error, and cross-validation error for models resulting from best

subset selection for Credit data.
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Example: Validation and cross validation (explanations)

• The validation set errors were calculated by randomly selecting three-quarters of the
observations as the training set, and the remainder as the validation set.

• The cross-validation errors were computed using k = 10 folds. In this case the
validation and cross-validation methods both result in a six-variable model, but this
need not always be the case.

• All three approaches suggest that the four-, five-, and six-variable models are roughly
equivalent in terms of their test errors.
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Choosing the optimal model Review

Fill in the blanks

1. The is the proportion of total variation in the dependent variable explained by the
independent variables through the model.

2. The methods previously discussed produce one model per model size p. Using the R2

to select from among them will always yield the model.

True or false?

1. Model selection criteria are an indirect way to calculate test error from training
error.

2. When using the AIC, the model with the highest AIC is the best.
3. When using the Adjusted R2, the model with the highest Adjusted R2 is the best.
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Choosing the optimal model Review

Fill in the blanks

1. The R2 is the proportion of total variation in the dependent variable explained by the
independent variables through the model.

2. The methods previously discussed produce one model per model size p. Using the R2

to select from among them will always yield the largest model.

True or false?

1. T Model selection criteria are an indirect way to calculate test error from training
error.

2. F When using the AIC, the model with the highest AIC is the best.
3. T When using the Adjusted R2, the model with the highest Adjusted R2 is the best.
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Shrinkage methods



Shrinkage methods

• The subset selection methods covered above use least squares at each step of the
algorithm to fit a model for a subset of the predictors.

• As an alternative, we can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates by shrinking them towards zero.

• It may not be immediately obvious why such a constraint should improve the fit, but
it turns out that shrinking the coefficient estimates can significantly reduce their
variance.
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Shrinkage methods

Ridge regression



Ridge regression: Least squares revisited

Recap: Least squares estimation

β0, β1, . . . , βp = argmin
β
RSS ,where

RSS =

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

=

n∑
i=1

(yi − ŷi)2

That is, the least squares estimates of β0, β1, . . . , βp are those values that minimize the
sum of the squared errors, or equivalently, the sum of the squared deviations of observed
from predicted values of Y .
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Ridge regression: Augmenting least squares by a penalty

Ridge regression coefficient estimates

β̂Rλ = argmin
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

β2
j

= argmin
β

RSS +λ

p∑
j=1

β2
j ,

where λ ≥ 0 is a tuning parameter that can be chosen freely and controls the amount of
shrinkage.
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Ridge regression: Interpretation of coefficients

• As with least squares, ridge regression seeks coefficient estimates that fit the data well,
by minimizing the RSS.

• However the term λ
∑
j β

2
j , called a shrinkage penalty, is small when β1, . . . , βp are

close to zero, which has the effect of shrinking the estimates of βj towards zero.
• The tuning parameter λ controls the relative impact of these two terms on the

regression coefficient estimates.
• Selecting a good value of λ is critical and is done using cross-validation.
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Example: Ridge regression on the Credit data set
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Figure 4: Standardized estimates of ridge regression coefficients for different values of λ for a model
fit on all p variables of the Credit data set.
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Example: Ridge regression on the Credit data set

Explanations

• In the left-hand panel, each curve corresponds to the ridge regression coefficient
estimate for one of the ten variables, plotted as a function of λ.

• The right-hand panel displays the same ridge coefficient estimates as the left-hand
panel, but instead of displaying λ on the x-axis, we now display ||β̂Rλ ||2/||β̂||2, where β̂

denotes the vector of least squares coefficient estimates.
• The notation ||β||2 denotes the `2 norm (pronounced “ell two”) of a vector, and is

defined as ||β||2 =
√∑p

j=1 β
2
j .
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Ridge regression: scaling of predictors

• The least squares coefficient estimates are scale equivariant: multiplying Xj by a
constant c simply leads to a scaling of the least squares coefficient estimates by a
factor of 1/c. In other words, regardless of how the jth predictor is scaled, Xj β̂j will
remain the same.

• In contrast, the ridge regression coefficient estimates can change substantially when
multiplying a given predictor by a constant, due to the sum of squares coefficients
term in the penalty part of the ridge regression objective function.

• Therefore, it is best to apply ridge regression after standardizing the predictors, using
the formula

x̃ =
xij√

1
n
∑n
i=1 (xij − x̄j)

2
(1)
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Why does ridge regression yield improved estimates?
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Figure 5: Simulated data with n = 50 observations, p = 45 predictors, all having nonzero
coefficients. Squared bias (black), variance (green), and test mean squared error (purple) for ridge
regression predictions as a function of λ and ||β̂Rλ ||2/||β̂||2. The horizontal dashed lines indicate the
minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE
is smallest.
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Shrinkage methods

The lasso



The lasso:6 A sparse alternative to ridge regression

Lasso regression coefficient estimates
Unlike subset selection, ridge regression results in a model with all p predictors. The lasso
overcomes this weakness by using an `1 penalty instead of an `2 penalty.

β̂Lλ = argmin
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |

= argmin
β
RSS + λ

p∑
j=1

|βj |,

where the `1 (“ell one”) norm of β is given by ||β||1 =
∑

|βj |.

6Least absolute shrinkage and selection operator

36



The lasso:6 A sparse alternative to ridge regression

Lasso regression coefficient estimates
Unlike subset selection, ridge regression results in a model with all p predictors. The lasso
overcomes this weakness by using an `1 penalty instead of an `2 penalty.

β̂Lλ = argmin
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |

= argmin
β
RSS + λ

p∑
j=1

|βj |,

where the `1 (“ell one”) norm of β is given by ||β||1 =
∑

|βj |.

6Least absolute shrinkage and selection operator

36



The lasso: Interpretation of coefficients

• As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
• However, in the case of the lasso, the `1 penalty has the effect of forcing some of the

coefficient estimates to be exactly equal to zero when the tuning parameter λ is
sufficiently large.

• Hence, much like best subset selection, the lasso performs variable selection.
• We say that the lasso yields sparse models—that is, models that involve only a subset

of the variables.
• As in ridge regression, selecting a good value of λ for the lasso is critical;

cross-validation is again the method of choice.
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Example: Lasso regression on the Credit data set
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Figure 6: Standardized estimates of lasso coefficients for different values of λ for a model fit on all p
variables of the Credit data set. Note how for large enough values of λ the coefficient estimates are
set to zero exactly; a feature that estimates in Figure 4 lack.
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Why does the lasso perform variable selection?

Why is is that the lasso, unlike ridge regression, results in coefficient estimates that are
exactly equal to zero? One can show that the lasso and ridge regression coefficient
estimates solve the problems

min
β

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

s.t.

{∑p
j=1 |βj | ≤ s for lasso∑p
j=1 β

2
j ≤ s for ridge
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The lasso picture

Figure 7: For p = 2 predictors, the constraint function implied by the penalty term and the RSS
can be shown visually. Contours of the error and constraint functions for the lasso (left) and ridge
regression (right). The blue areas are the constraint regions defined by |β1|+ |β2| ≤ s and
β2
1 + β2

2 ≤ s. The red ellipses are the contours of the RSS.
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Comparing lasso and ridge regression
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Figure 8: Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso
on simulated data set of Slide 35. Right: Comparison of squared bias, variance, and test MSE
between lasso (solid) and ridge (dashed). Both are plotted against their R2 on the training data, as a
common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is
smallest. 41



Comparing lasso and ridge regression (continued)
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Figure 9: The simulated data is similar to that in Figure 8, except that now only two predictors are
related to the response.
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Conclusions

• These two examples illustrate that neither ridge regression nor the lasso will
universally dominate the other.

• In general, one might expect the lasso to perform better when the response is a
function of only a relatively small number of predictors.

• However, the number of predictors that is related to the response is never known a
priori for real data sets.

• A technique such as cross-validation can be used in order to determine which
approach is better on a particular data set.
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Shrinkage methods Review

Fill in the blanks

1. Shrinkage methods are also called methods.
2. The fact of limited model size is called .

True or false?

1. Instead of selecting a subset of the available variables, shrinkage uses a different
estimator on the full set of variables.

2. Ridge regression provides shrinkage and model selection in one step by setting very
small coefficients to zero.

3. A tuning parameter λ allows us to decide how much shrinkage we want to apply to
the model. A lower λ will yield a model closer to a non-regularized model. A larger λ
will yield a sparser model.
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Shrinkage methods Review

Fill in the blanks

1. Shrinkage methods are also called regularization methods.
2. The fact of limited model size is called sparsity.

True or false?

1. T Instead of selecting a subset of the available variables, shrinkage uses a different
estimator on the full set of variables.

2. F Ridge regression provides shrinkage and model selection in one step by setting very
small coefficients to zero.

3. T A tuning parameter λ allows us to decide how much shrinkage we want to apply to
the model. A lower λ will yield a model closer to a non-regularized model. A larger λ
will yield a sparser model.
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Shrinkage methods

Selecting the tuning parameter



Selecting λ for ridge regression and lasso

• As for subset selection, for ridge regression and lasso we require a method to
determine which of the models under consideration is best.

• That is, we require a method for selecting a value for the tuning parameter λ or
equivalently, the value of the constraint s.

• Cross-validation provides a simple way to tackle this problem. We choose a grid of λ
values and compute the cross-validation error rate for each value of λ.

• We then select the tuning parameter value for which the cross-validation error is
smallest.

• Finally, the model is re-fit using all of the available observations and the selected
value of the tuning parameter.
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Example: Selecting λ for ridge on the Credit data set
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Figure 10: Left: Cross-validation errors that result from applying ridge regression to the Credit
data set with various values of λ. Right: The coefficient estimates as a function of λ. The vertical
dashes lines indicate the value of λ selected by cross-validation.
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Example: Selecting λ for lasso on simulated data
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Figure 11: Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data
set from Figure 9. Right: The corresponding lasso coefficient estimates are displayed. The vertical
dashes lines indicate the lasso fit for which the cross-validation error is smallest. 47



Summary



Summary (1/2)

Model selection
• Best Subset Selection: This is the most exhaustive approach. It considers all possible combinations of

predictors and selects the model with the best fit (usually evaluated using criteria like Akaike Information
Criterion or Bayesian Information Criterion). While it’s comprehensive, it’s computationally expensive and
practically infeasible with a large number of predictors due to combinatorial explosion.

• Forward Stepwise Selection: This is a more computationally manageable method. It starts with no
predictors and adds them one at a time, each time choosing the predictor that provides the best fit to the
model. It’s less computationally intensive than best subset selection but can miss interactions between
variables since it never evaluates all possible models.

• Backward Stepwise Selection: The opposite of forward selection. It starts with all predictors and
systematically removes the least significant one at each step. This approach is good when you have a large
number of predictors to start with, but like forward selection, it can miss important interactions.
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Summary (2/2)

Shrinkage and Regularization (Lasso and Ridge Regression)
• Ridge Regression: It adds a penalty equal to the square of the magnitude of coefficients to the loss function.

This method shrinks coefficients towards zero but doesn’t set any to zero, which means it does not do
feature selection but reduces overfitting.

• Lasso Regression: It uses an absolute value penalty which can shrink coefficients all the way to zero, thus
performing feature selection. Lasso is useful when we believe many features are irrelevant or when we want
a sparse model.

Each of these methods has its trade-offs. Best subset is comprehensive but impractical for many variables.
Forward and backward selections are more computationally feasible but might miss important predictors. Ridge
and Lasso introduce bias to reduce variance and overfitting, with Lasso providing the added advantage of feature
selection.

The choice of method often depends on the specific context, like the number of predictors, computational
resources, and the need for interpretability (sparse models like those from Lasso are easier to interpret). In
practice, cross-validation is crucial to assess the performance of these models and avoid overfitting.
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This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.
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