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The Challenge of Multiple
Testing



The Challenge of Multiple Testing

• Given one Hypothesis, we know that α (the significance level) controls the probability
for a Type I error.

• Assume we want to test m null hypothesis at α = 0.01
• If we reject all null hypotheses for which the p-value falls below 0.01, then how many

Type I errors should we expect to make?
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The Challenge of Multiple Testing

• Assume we flip 1024 fair coins ten times each and define H0 : The coin is fair
• Then one possible outcome is that one coin comes up all tails (Probability: 1

210 = 1
1024

that a single coin will come up all tails.)
• If one coin comes up all tails, then we might suspect that this coin is not fair (p-Value

for such a HT: 0.002, Thus we reject H0).
• BUT: It would be incorrect to conclude that the coin is not fair, as we just have

gotten ten tails in a row by chance.
• The challenge of Multiple Testing:

The more you search, the more you find, purely by chance!
• Note: Type I errors are considered more harmful than Type II errors, as they are

connected with discoveries and subsequently with more/further time and effort wrt.
research.
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The Challenge of Multiple Testing

• In more general terms...
• When testing a huge number of null hypotheses, we are bound to get some very small

p-values by chance! (e.g. 10 tails in a row)
• Thus we might end up rejecting a large number of Hypotheses
• Assume m = 10, 000 hypotheses, when α = 0.01, then we expect to falsely reject 100 null

hypothesis. That are a lot of Type I errors.
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The Challenge of Multiple Testing

H0 is True H0 is False Total
Reject H0 V S R
Do not reject H0 U W m − R
Total m0 m −m0 m

Assume m null hypotheses:

• A given null hypothesis is either true or false, and a test of that null hypothesis can either reject
or fail to reject it. Then let:

• V : Number of Type I Errors
• W : Number of Type II Errors
• U and S : Number of correct decisions.
• Note: In practice, the individual values of V , S ,U , and W are unknown.

• BUT, we have access to R = V + S and m − R = U +W , which are the numbers of null
hypotheses rejected and not rejected, respectively.
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The Challenge of Multiple Testing Review

Questions

1. Explain the meaning of a Type I error.
2. Explain the meaning of a Type II error.
3. What happens to the Type I error and the Type II error, respectively, when you

decrease your significance level α?
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The Family-Wise Error Rate



The Family-Wise Error Rate

• The family-wise error rate (FWER) is the probability of making at least one Type I
error: FWER = Pr(V ≥ 1)

• Controlling each null hypothesis at level α, leads to:

FWER = 1− Pr(V = 0) = 1− Pr(do not falsely reject any null hypothesis)

= 1− Pr

 m⋂
j=1

(do not falsely reject H0j)


• Assuming independence among the hypothesis tests:

FWER(α) = 1−
m∏
j=1

(1− α) = 1− (1− α)m

• Note:
• For one HT: FWER(α) = 1− (1− α)1 = α

• For m = 100 and α = 0.05 : FWER(α) = 1− (1− 0.05)100 = 0.994.
• We are virtually guaranteed to make at least one Type I error. 7



The Family-Wise Error Rate

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Hypotheses

Fa
m

ily
−

W
is

e 
E

rr
or

 R
at

e

α = 0.05
α = 0.01
α = 0.001 Figure 1: The family-wise error

rate, as a function of the number of
hypotheses tested (displayed on the log
scale), for three values of α : α = 0.05
(orange), α = 0.01 (blue), and
α = 0.001 (purple). The dashed line
indicates 0.05. For example, in order
to control the FWER at 0.05 when
testing m = 50 null hypotheses, we
must control the Type I error for each
null hypothesis at level = 0.001.
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The Family-Wise Error Rate

• How to control the FWER?
1. The Bonferroni method
2. Holm’s Step-Down Procedure

• Both can be applied whenever m p-values have been computed, independent of the
form of hypotheses, the choice of test statistics or the independence of the p-values.
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The Family-Wise Error Rate – The Bonferroni method

• Let Aj be the event that we make a Type I error for the jth null hypothesis:

FWER(α) = Pr(falsely reject at least one null hypothesis)

= Pr(
m⋃
j=1
Aj)

≤
m∑
j=1
Pr(Aj)

• Note: Pr(A ∪ B) ≤ Pr(A) + Pr(B) regardless of whether A and B are independent.
• The Bonferroni method then sets the threshold for rejecting each hypothesis test to

α
m , such that: Pr(Aj) ≤ α

m :

FWER(α) ≤ m × α

m
= α

• For example: To control the FWER at level 0.1, while testing m = 100 null
hypotheses, Bonferroni requires us to reject all null hypotheses for which the p-value is
below 0.001. 10



The Family-Wise Error Rate Review

Manager Mean, x̄ Standard Deviations t-statistic p-value
One 3.0 7.4 2.86 0.006
Two -0.1 6.9 -0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

Table 1: Summary statistics for
the first five managers in the Fund
dataset. The last two columns provide
the t-statistic and associated p-value
for testing H0j : µj = 0, the null
hypothesis that the (population) mean
return for the jth hedge fund manager
equals zero.

Questions:

a) Define the FWER.
b) Which manager fail to show statistically significant returns at α = 5%, when you test each

manager independently?
c) Use the Bonferroni method at α = 5% to test, whether any of the managers show statistically

significant returns.
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The Family-Wise Error Rate

Holm’s Step-Down Procedure
• Bonferroni can be quite conservative (true FWER might be lower than target FWER).
• Holm is less restrictive in that it rejects more null hypotheses, resulting in fewer Type

II errors.

Algorithm 13.1: Holm’s Step-Down Procedure to Control the FWER
1. Specify α at the level at which to control the FWER

2. Compute p-values p1, ..., pm for the m null hypotheses H01, ...,H0m

3. Order the m p-values so that p(1) ≤ p(2) ≤ ... ≤ p(m)

4. Define: L = min{j : p(j) > α
m+1−j }

5. Reject all null hypotheses H0j for which pj < p(L)
12



The Family-Wise Error Rate Review

Holm’s Step Down Procedure – Manager Example

Manager Mean, x̄ Standard deviation t-statistic p-value

One 3.0 7.4 2.86 0.006
Two −0.1 6.9 −0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

Table 2: Summary statistics for the first five managers in the Fund dataset. The last two columns provide the t-statistic and
associated p-value for testing H0j : µj = 0, the null hypothesis that the (population) mean return for the jth hedge fund manager
equals zero.

a) Use Holm’s Step Down procedure at α = 5% to test whether any of the managers show
statistically significant returns.

b) Compare and contrast Holm’s Step Down procedure with the Bonferroni method.
13



The Family-Wise Error Rate
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Figure 2: Each panel displays, for a separate simulation, the sorted p-values for tests of m = 10 null hypotheses. The
p-values corresponding to the m0 = 2 true null hypotheses are displayed in black, and the rest are in red. When controlling the
FWER at level 0.05, the Bonferroni procedure rejects all null hypotheses that fall below the black line, and the Holm procedure
rejects all null hypotheses that fall below the blue line. The region between the blue and black lines indicates null hypotheses that
are rejected using the Holm procedure but not using the Bonferroni procedure. In the center panel, the Holm procedure rejects
one more null hypothesis than the Bonferroni procedure. In the right-hand panel, it rejects five more null hypotheses.
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The Family-Wise Error Rate
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Figure 3: In a simulation setting in
which 90% of the m null hypotheses are true,
we display the power (the fraction of false
null hypotheses that we successfully reject)
as a function of the family-wise error rate.
The curves correspond to m = 10 (orange),
m = 100 (blue), and m = 500 (purple). As
the value of m increases, the power decreases.
The vertical dashed line indicates a FWER
of 0.05.

15



The False Discovery Rate



The False Discovery Rate

• Controlling the FWER at level α helps ensure that we do not reject any true null
hypotheses. This might be too stringent.

• We might want to tolerate a few false positives in the interest of making more
discoveries.

• We might try to make sure that the ratio of False Positives (V ) to Total Positives
(R = V + S) is sufficiently low, so that most of the rejected null hypotheses are not
false positives.
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The False Discovery Rate

• To understand the false discovery rate, let us first look at the false discovery
proportion (FDP):

FDP =
False positives
Total positives

=
V
R

=
V

V + S
• Example: FDP = 20% ⇒ No more than 20% of the rejected null hypotheses are false

positives.
• BUT: The data analyst might guarantee that Pr(V ≥ 1) ≤ α for any pre-specified α,

but she cannot guarantee V = 0 on any dataset.
• Thus, we control the False Discovery Rate (FDR) instead:

FDR = E(FDP) = E(
V
R
)

• We say, we control the FDR at the level q, whereas q ∈ [0, 1].
• Note: The expected value is taken over the population.
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The False Discovery Rate

• For instance, suppose we control the FDR for m null hypothesis at q = 0.2.
• If we repeat the experiment a huge number of times and each time control the FDR at
q = 0.2, then we should expect that, on average 20% of the rejected null hypotheses
will be false positives.

• How to control the FDR?
• Benjamini Hochberg (BH) procedure (around since mid-1990s)

18



The False Discovery Rate

Algorithm 13.2: BH Procedure to control the FDR
1. Specify q, the level at which to control the FDR.
2. Compute p-vales p1, ..., pm for the m null hypotheses H01, ...,H0m

3. Order the m p-values so that p(1) ≤ p(2) ≤ ... ≤ p(m)

4. Define: L = min{j : p(j) < q×j
m }

5. Reject all null hypotheses H0j for which pj ≤ p(L)

• As long as the m p-values are independent or only mildly dependent, BH guarantees
that FDR ≤ q.

• Holds independent of how many null hypotheses are true and regardless of the
distribution of the p-values.

• Note:
• Bonferroni is independent of the data
• BH is data dependent (i.e. we reject the p-value that is less than or equal to the Lth

smallest p-value.)
19



The False Discovery Rate Review

BH Procedure – Manager Example

Manager Mean, x̄ Standard deviation t-statistic p-value

One 3.0 7.4 2.86 0.006
Two −0.1 6.9 −0.10 0.918
Three 2.8 7.5 2.62 0.012
Four 0.5 6.7 0.53 0.601
Five 0.3 6.8 0.31 0.756

Table 3: Summary statistics for the first five managers in the Fund dataset.

a) Use the Benjamini Hochberg (BH) Procedure to control the FDR at q = 5% and for testing the
null hypothesis, whether any of the managers show statistically significant returns.

b) Compare and contrast the Bonferroni method with the Benjamini Hochberg method for dealing
with the problem of multiple testing.
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The False Discovery Rate
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Figure 4: Each panel displays the same set of m = 2, 000 ordered p-values for the Fund data. The green lines indicate the
p-value thresholds corresponding to FWER control, via the Bonferroni procedure, at levels α = 0.05 (left), α = 0.1 (center), and
α = 0.3 (right). The orange lines indicate the p-value thresholds corresponding to FDR control, via Benjamini-Hochberg, at
levels q = 0.05 (left), q = 0.1 (center), and q = 0.3 (right). When the FDR is controlled at level q = 0.1, 146 null hypotheses are
rejected (center); the corresponding p-values are shown in blue. When the FDR is controlled at level q = 0.3, 279 null hypotheses
are rejected (right); the corresponding p-values are shown in blue. 21
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Resampling

• In the section we discuss two resampling methods:
1. Cross-Validation
2. The Bootstrap

• These methods refit a model of interest to samples formed from the training set, in
order to obtain additional information about the fitted model.

• For example, they provide estimates of test-set prediction error, and the standard
deviation and bias of our parameter estimates
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Resampling

• Recall the distinction between the test error and the training error:
• The test error is the average error that results from using a statistical learning method to

predict the response on a new observation, one that was not used in training the method.
• In contrast, the training error can be easily calculated by applying the statistical learning

method to the observations used in it’s training.
• But the training error rate is often quite different from the test error rate, and in

particular the former can dramatically underestimate the latter.
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Resampling

Recall the analysis from Lecture 1...
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Figure 5: Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange
curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red curve), and
minimum possible test MSE over all methods (dashed line). Squares represent the training and test MSEs for the three fits shown
in the left-hand panel.
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Introduction to resampling Review

Questions

1. Explain the U-Shape of the red test MSE curve.
2. What is the meaning of the horizontal grey dotted line in the figure on the right.
3. Do you always want to choose the method that provides you with the lowest training

MSE? Why? Why not?
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Cross Validation

• Best solution: a large designated test set. However: Often simply not available.
• Some methods make a mathematical adjustment to the training error rate in order to

estimate the test error rate. These include the Mallow’s Cp statistic, the Akaike
Information Criteria (AIC) and the Bayesian Information Criteria (BIC). They are
discussed elsewhere in the course.

• Here we instead consider a class of methods that estimate the test error by holding
out a subset of the training observations from the fitting process, and then applying
the statistical learning method to those held out observations.
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Cross Validation

Validation-Set Approach



Validation-Set Approach

• Randomly divide the available set of samples into two parts: a training set and a
validation or hold-out set.

• The model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set.

• The resulting validation-set error provides an estimate of the test error. This is
typically assessed using MSE in the case of a quantitative response and
misclassification rate in the case of a qualitative (discrete) response.
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Validation-Set Approach

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!
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Figure 6: A random splitting into two halves: left part is training set, right part is validation set
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Validation-Set Approach

• Example: Automobile Data
• We want to compare linear vs. higher-order polynomial terms in a linear regression
• Randomly split the 392 observations into two sets, a training set containing 196 of the

data points, and a validation set containing the remaining 196 observations.
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Figure 7: Left panel shows single split; right panel shows multiple splits.
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Validation-Set Approach

• Drawbacks of validation set approach:
• The validation estimate of the test error can be highly variable, depending on precisely

which observations are included in the training set and which observations are included in
the validation set.

• In the validation approach, only a subset of the observations — those that are included in
the training set rather than in the validation set — are used to fit the model.

• This suggests that the validation set error may tend to overestimate the test error for the
model fit on the entire data set. Why?
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Cross Validation

K-Fold Cross-Validation



K-Fold Cross-Validation

• The idea is to randomly divide the data into K equal-sized parts. First, leave out part
k and fit the model to the other K − 1 parts (combined). For this fit, obtain the
predictions and test MSE for the left-out kth part.

• This is done in turn for each part k = 1, 2, ...K , and then the average MSE across all
K folds is computed. results are combined.

• Let the K parts be C1,C2, ...CK , where Ck denotes the indices of the observations in
part k. There are nk observations in part k:

CV(K) =
1
K

K∑
k=1

MSEk

where MSEk =
∑
i∈Ck (yi − ŷi)

2/nk and ŷi is the fit for observation i, obtained from the
data with part k removed.

• Setting K = n yields n-fold or leave-one out cross-validation (LOOCV)
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K-Fold Cross-Validation

• Divide data into K roughly equal-sized parts (here K = n)

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!
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Figure 8: A schematic display of LOOCV. A set of n data points is repeatedly split into a training set (shown in blue)
containing all but one observation, and a validation set that contains only that observation (shown in beige). The test error
is then estimated by averaging the n resulting MSE’s. The first training set contains all but observation 1, the second
training set contains all but observation 2, and so forth.

32



K-Fold Cross-Validation

• An example with K = 5:
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Figure 9: A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups.
Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test
error is estimated by averaging the five resulting MSE estimates.
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K-Fold Cross-Validation

Some notes about LOOCV and choosing a higher K -fold CV:

• Validation Set Approach (VSA): (a) Training set is typically around half the size of the original
data set and (b) VSA will yield different results when applied repeatedly due to randomness in
the training/validation set splits

• In LOOCV, we repeatedly fit the statistical learning method using training sets that contain
n − 1 observations, almost as many as are in the entire data set.

• Consequence: (a) LOOCV tends not to overestimate the test error rate as much as the
validation set approach does and (b) no randomness in the training/validation split.

• But: LOOCV has the potential to be expensive to implement, since the model has to be fit n
times. This can be very time consuming if n is large, and if each individual model is slow to fit.

• Solution: Choosing K = 5 or K = 10 might serve as a better idea.
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K-Fold Cross-Validation

• Auto data revisited:
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Figure 10: Cross-validation was used on the Auto data set in order to estimate the test error that results from
predicting mpg using polynomial functions of horsepower. Left: The LOOCV error curve. Right: 10-fold CV was run nine
separate times, each with a different random split of the data into ten parts. The figure shows the nine slightly different CV
error curves.
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K-Fold Cross-Validation

• When considering real-data we do not know the true test MSE, which makes it
difficult to determine the accuracy of the cross-validation approach.

• Reconsider the simulated data set from Lecture 1 (provided again in the next three
slides), in which we fitted different smoothing splines to the data.

• Let’s apply cross validation to this simulated data to find the optimal amount of
flexibility that the smoothing spline should have.

• Note that in such situations, we are not necessarily interested in the magnitude of the
test MSE, but rather want to find the amount of flexibility that leads to the lowest
MSE.
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K-Fold Cross-Validation
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Figure 11: Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange
curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red curve), and
minimum possible test MSE over all methods (dashed line). Squares represent the training and test MSEs for the three fits shown
in the left-hand panel.
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K-Fold Cross-Validation

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 12: Details are as before, using a different true f that is much closer to linear. In this
setting, linear regression provides a very good fit to the data.

38



K-Fold Cross-Validation
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Figure 13: Details are as in Figure 2.9, using a different f that is far from linear. In this setting,
linear regression provides a very poor fit to the data.
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K-Fold Cross-Validation

• True and estimated test MSE for the simulated data:
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Figure 14: True and estimated test MSE for the simulated data sets. The true test MSE is
shown in blue, the LOOCV estimate is shown as a black dashed line, and the 10-fold CV
estimate is shown in orange. The crosses indicate the minimum of each of the MSE curves.
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Cross Validation

Bias-Variance Trade-Off



K-Fold Cross-Validation - Bias-Variance Trade-Off

• Using k-fold CV with k < n has a computational advantage to LOOCV and often also gives
more accurate estimates of the test error rate than LOOCV. This has to do with a bias-variance
trade-off.

• Test Error Bias: LOOCV < k-fold CV

• Test Error Variance: k-fold CV < LOOCV

• LOOCV: train n different models on nearly identical observations ⇒ High Correlation among
the outputs

• k-fold CV: average the outputs of k fitted models that are less correlated with each other
(smaller overlap between the training sets).

• Recall: the mean of many highly correlated quantities has higher variance than does the mean
of many quantities that are not as highly correlated.

• Thus K = 5 or K = 10 provides a good compromise for this bias-variance trade-off.
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Cross Validation

Cross Validation in the
Classification Setting



K-Fold Cross-Validation - Classification

• So far: Cross Validation for Regression. Now let’s look at classification.
• Here we use the number of missclassified observations.
• We divide the data into K roughly equal-sized parts C1,C2, ...CK . Ck denotes the

indices of the observations in part k. There are nk observations in part k, then:

CVK =
1
K

K∑
k=1

ERRk

where ERRK =
∑
i∈Ck I (yi 6= ŷi)/nk .
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K-Fold Cross-Validation - Classification

• Example: Let’s reconsider the data from Lecture 2.
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Figure 15: A simulated data set consisting of 100 observations in each of two groups, indicated in blue and in orange. The
purple dashed line represents the Bayes decision boundary. The orange background grid indicates the region in which a test
observation will be assigned to the orange class, and the blue background grid indicates the region in which a test observation will
be assigned to the blue class. 43



K-Fold Cross-Validation - Classification

• Let’s fit a logistic regressions with different degrees of polynomials, i.e. degrees 1-4.
• For example, we can fit a quadratic logistic regression model of the form:

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2

1 + β3X2 + β4X2
2 (1)
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K-Fold Cross-Validation - Classification
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Figure 16: Logistic regression fits on the two-dimensional classification data. The Bayes decision boundary is represented
using a purple dashed line. Estimated decision boundaries from linear, quadratic, cubic and quadratic (degrees 1–4) logistic
regressions are displayed in black. The test error rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133. 45



K-Fold Cross-Validation - Classification

• How to decide among the four logistic regressions?
• We can use Cross Validation:

2 4 6 8 10

0
.1

2
0

.1
4

0
.1

6
0

.1
8

0
.2

0

Order of Polynomials Used

E
rr

o
r 

R
a

te

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0
.1

2
0

.1
4

0
.1

6
0

.1
8

0
.2

0

1/K

E
rr

o
r 

R
a

te

Figure 17: Test error (brown), training error (blue), and 10-fold CV error (black) on the two-dimensional classification data.
Left: Logistic regression using polynomial functions of the predictors. The order of the polynomials used is displayed on the
x-axis. Right: The KNN classifier with different values of K, the number of neighbors used in the KNN classifier. NOTE: We have
not discussed the KNN in this course and it will thus also not be part of the exam.
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The Bootstrap



Bootstrapping

• The bootstrap is a flexible and powerful statistical tool that can be used to quantify
the uncertainty associated with a given estimator or statistical learning method.

• For example, it can provide an estimate of the standard error of a coefficient, or a
confidence interval for that coefficient.

• Loosely speaking: We want to repeatedly create smaller new samples from our original
large sample, given that we do not know anything about the distribution of the
population.
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Bootstrapping

• The use of the term bootstrap derives from the phrase to pull oneself up by one’s
bootstraps, widely thought to be based on one of the eighteenth century ”The
Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it looked like all was
lost, he thought to pick himself up by his own bootstraps.
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Bootstrapping

• Suppose that we wish to invest a fixed sum of money in two financial assets that yield
returns of X and Y , respectively, where X and Y are random quantities.

• We will invest a fraction α of our money in X , and will invest the remaining (1− α) in
Y .

• We wish to choose α to minimize the total risk, or variance, of our investment. In
other words, we want to minimize Var(αX + (1− α)Y ).

• One can show that the value that minimizes the risk is given by:

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
, (2)

where σ2
X = Var(X), σ2

Y = Var(Y ), σXY = Cov(X ,Y ).
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Bootstrapping

• But the values of σ2
X ,σ2

X and σXY are unknown.
• We can compute estimates for these quantities, σ̂2

X , σ̂2
X , and σ̂2

X , using a data set that
contains measurements for X and Y .

• We can then estimate the value of α that minimizes the variance of our investment
using:

α̂ =
σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY
(3)

• Note: This is a simulation study - so we assume that we know the true population
distribution of X and Y . For the following simulations the parameters were set to
σ2
X = 1, σ2

Y = 1.25, σXY = 0.5.
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Bootstrapping
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Figure 18: Each panel displays 100 simulated returns for investments X and Y . From left to right
and top to bottom, the resulting estimates for α are 0.576, 0.532, 0.657 and 0.651.
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Bootstrapping

• To estimate the standard deviation of α̂ we repeated the process of simulating 100
paired observations of X and Y , and estimate α 1000 times.

• We thereby obtained 1000 estimates for α, which we can call α̂1, α̂2, ...α̂1000.
• Remember we know the simulation parameters, which are

σ2
X = 1, σ2

Y = 1.25, σXY = 0.5, and so we know that the true value of α is 0.6
(indicated by the red line in the figure below).
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Bootstrapping

• The mean over all 1000 estimates for α is:

α =
1

1000

1000∑
r=1

α̂r = 0.5996,

very close to α = 0.6, and the standard deviation of the estimates is:

SE(α̂) =

√√√√ 1
1000

1000∑
r=1

(α̂r − α)2 = 0.083,

• This gives us a very good idea of the accuracy of α̂: SE(α̂) ∼ 0.083
• So roughly speaking, for a random sample from the population, we would expect α̂ to

differ from α by approximately 0.08, on average.
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Bootstrapping
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Figure 19: Left: A histogram of the estimates of α obtained by generating 1000 simulated data sets from the true population.
Center: A histogram of the estimates of α obtained from 1000 bootstrap samples from a single data set. Right: The estimates of
α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α.
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Bootstrapping

• Now back to the real world
• The procedure outlined above cannot be applied, because for real data we cannot generate

new samples from the original population.
• However, the bootstrap approach allows us to use a computer to mimic the process of

obtaining new data sets, so that we can estimate the variability of our estimate without
generating additional samples.

• Rather than repeatedly obtaining independent data sets from the population, we instead
obtain distinct data sets by repeatedly sampling observations from the original data set
with replacement.

• Each of these “bootstrap data sets” is created by sampling with replacement, and is the
same size as our original dataset. As a result some observations may appear more than
once in a given bootstrap data set and some not at all.
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Bootstrapping
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Figure 20: A graphical illustration of the bootstrap approach on a small sample containing n = 3 observations. Each
bootstrap data set contains n observations, sampled with replacement from the original data set. Each bootstrap data set is used
to obtain an estimate of α 56



Bootstrapping

• Denoting the first bootstrap data set by Z∗1, we use Z∗1 to produce a new bootstrap
estimate for α, which we call α̂∗1.

• This procedure is repeated B times for some large value of B (say 100 or 1000), in
order to produce B different bootstrap data sets, Z∗1, Z∗1, ..., Z∗B and B
corresponding α estimates, α̂∗1, α̂∗2, α̂∗3, ..., α̂∗B .

• We estimate the standard error of these bootstrap estimates using the formula:

SEB(α̂) =

√√√√ 1
B − 1

B∑
r=1

(α̂∗r − α̂∗)

• This serves as an estimate of the standard error of α̂ estimated from the original data
set. For this example SEB(α̂) = 0.087.
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Bootstrapping
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Figure 21: Left: A histogram of the estimates of α obtained by generating 1000 simulated data sets from the true population.
Center: A histogram of the estimates of α obtained from 1000 bootstrap samples from a single data set. Right: The estimates of
α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α.
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Resampling Review

True or False?

a) LOOCV is always the preferred method, when aiming to reduce the test MSE.
b) The validation set approach has a lower bias than the LOOCV approach.
c) The correlation among training datasets is lower for k-fold CV, than for LOOCV.
d) Bootstrapping refers to the situation, in which we create new samples by drawing

observations from the original sample, without replacement.
e) Bootstrapping can only be applied, if we know the distribution of the population.
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Resampling Review

True or False?

a) F LOOCV is always the preferred method, when aiming to reduce the test MSE.
b) F The validation set approach has a lower bias than the LOOCV approach.
c) T The correlation among training datasets is lower for k-fold CV, than for LOOCV.
d) F Bootstrapping refers to the situation, in which we create new samples by drawing

observations from the original sample, without replacement.
e) F Bootstrapping can only be applied, if we know the distribution of the population.
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Disclaimer: This material has been prepared by Philipp Kremer and Constantin Lisson in 2021 and draws very

extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to statistical learning

and the corresponding lecture slides available from these authors.
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Solutions to review questions



Solutions to review questions

Review questions from Slide 6

a) The Type I Error represents the Probability of rejecting H0, if in fact H0 is true.

b) The Type II Error measure the Probability of failing to reject H0, if in fact H0 is false.

c) When we decrease the significance level α, i.e. the probabilits of a Type I error, then the
probability of a Type II error will increase.
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Solutions to review questions

Review questions from Slide 11

a) The Family Wise Error Rate is the probability of making at least one Type I error, that is
rejecting H0, although H0 is true.

b) Testing each manager individually, we can reject Manager Two, Four and Five, as all of the
p-Values are greater than α = 0.05%.

c) Using Bonferroni: α/m = 0.05/5 = 0.01 ⇒ Reject the null hypothesis only for the first
manager, since all other p-values exceed 0.01.
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Solutions to review questions

Review questions from Slide 13

a) Here m = 5. Associated ordered p-values:

1. p(1) = 0.006 < 0.05/(5+ 1− 1) = 0.01
2. p(2) = 0.012 < 0.05/(5+ 1− 2) = 0.0125
3. p(3) = 0.601 > 0.05/(5+ 1− 3) = 0.0167
4. p(4) = 0.756 > 0.05/(5+ 1− 4) = 0.025
5. p(5) = 0.918 > 0.05/(5+ 1− 5) = 0.05

• Holm rejects the first two null hypotheses, which in turn implies L = 3.

b) The Bonferroni Method is stricter in the sense that we only find one statistically significant
manager, as compared to Holm’s Set Down procedure, in which we find two statistically
significant manager.
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Solutions to review questions

Review questions from Slide 20

a) Here m = 5. Associated ordered p-values:

1. p(1) = 0.006 < 0.05× 1
5

2. p(2) = 0.012 < 0.05× 2
5

3. p(3) = 0.601 > 0.05× 3
5

4. p(4) = 0.756 > 0.05× 4
5

5. p(5) = 0.918 > 0.05× 5
5

• To control the FDR at 5%, we reject the null hypothesis that the first and the third fund
manager perform no better than chance.

b) The Bonferroni Method is stricter in the sense that we only find one statistically significant
manager, as compared to Benjamini Hochberg approach, in which we find two statistically
significant manager.
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Solutions to review questions

Review questions from Slide 25:

a) As we choose a more flexible method, the bias associated with each observed data point is
reduced and the red line starts to decrease. As we try to model more information from the
training data, we continue to reduce the bias, but increase the variance of the method. The
overfit to the training data leads to a higher variance and an increasing red test MSE curve, as
the more complex procedure performs inferior on previously unseen test observations.

b) The horizontal grey dotted line represents the irreducible error. It is the error that can not be
eliminated, even when we know the true underlying functional form of f (X) (For the distinction
between reducible and irreducible error, recall Lecture 1).

c) No, choosing the method with the lowest training MSE, will lead to choosing the method that
has potentially overfit the data. Applying such method to previously unobserved data will lead
to a high test MSE.
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This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.
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