
Tree-based methods

December 29, 2024

Table of contents

1. The basics of decision trees

2. Bagging, random forests, boosting

1

Tree-based methods: A high level overview

• Tree-based methods can be used for regression and classification problems.
• They involve splitting up the predictor space into a number of simple regions. This is
called stratifying or segmenting.

• The set of rules used for segmenting can be represented as a tree, which is why these
techniques are called decision-tree methods.

2

Tree-based methods: A high level overview

• Tree-based methods can be used for regression and classification problems.
• They involve splitting up the predictor space into a number of simple regions. This is
called stratifying or segmenting.

• The set of rules used for segmenting can be represented as a tree, which is why these
techniques are called decision-tree methods.

2

Tree-based methods: A high level overview

• Tree-based methods can be used for regression and classification problems.
• They involve splitting up the predictor space into a number of simple regions. This is
called stratifying or segmenting.

• The set of rules used for segmenting can be represented as a tree, which is why these
techniques are called decision-tree methods.

2

Advantages and disadvantages of tree-based methods

+ Tree-based methods are simple to interpret usefully.
− They typically cannot compete with the best supervised learning approaches in terms
of prediction accuracy.

• Bagging, random forests, and boosting are methods that grow multiple trees which are
then combined to yield a single consensus prediction.

• Combining multiple trees often results in dramatic improvements in prediction
accuracy, at the expense of being somewhat less interpretable.

3

Advantages and disadvantages of tree-based methods

+ Tree-based methods are simple to interpret usefully.
− They typically cannot compete with the best supervised learning approaches in terms
of prediction accuracy.

• Bagging, random forests, and boosting are methods that grow multiple trees which are
then combined to yield a single consensus prediction.

• Combining multiple trees often results in dramatic improvements in prediction
accuracy, at the expense of being somewhat less interpretable.

3

Advantages and disadvantages of tree-based methods

+ Tree-based methods are simple to interpret usefully.
− They typically cannot compete with the best supervised learning approaches in terms
of prediction accuracy.

• Bagging, random forests, and boosting are methods that grow multiple trees which are
then combined to yield a single consensus prediction.

• Combining multiple trees often results in dramatic improvements in prediction
accuracy, at the expense of being somewhat less interpretable.

3

Advantages and disadvantages of tree-based methods

+ Tree-based methods are simple to interpret usefully.
− They typically cannot compete with the best supervised learning approaches in terms
of prediction accuracy.

• Bagging, random forests, and boosting are methods that grow multiple trees which are
then combined to yield a single consensus prediction.

• Combining multiple trees often results in dramatic improvements in prediction
accuracy, at the expense of being somewhat less interpretable.

3

The basics of decision trees

The basics of decision trees

Decision trees can be applied to both regression and classification problems.

We first consider regression problems and then move on to classification.

4

The basics of decision trees

Decision trees can be applied to both regression and classification problems.

We first consider regression problems and then move on to classification.

4

The basics of decision trees

Regression trees

Example: How can we segment the Hitters salary data?

Figure 1: Scatter plot of the
Years and Hits variables
from the Hitters data set.
Salary is color-coded from
low (blue, green) to high
(yellow, red).

Baseball salary data: how would you stratify it?

Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 515

Example: Decision tree for the Hitters data

Figure 2: A regression tree
for predicting the log Salary
of a baseball player, based on
the number of Years that he
has played in the major
leagues and the number of
Hits that he made in the
previous year.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74 6

Example: Decision tree for the Hitters data

• At a given internal node, the label (of the form
Xj < tk) indicates the left-hand branch emanating
from that split and the right-hand branch
corresponds to Xj ≥ tk . For instance, the split at
the top of the tree results in two large branches.
The left-hand branch corresponds to Years < 4.5
and the right-hand branch corresponds to
Years ≥ 4.5.

• The tree has two internal nodes and three
terminal nodes or leaves. The number in each leaf
is the mean of the response for the observations
that fall there.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

7

Example: Decision tree for the Hitters data

• At a given internal node, the label (of the form
Xj < tk) indicates the left-hand branch emanating
from that split and the right-hand branch
corresponds to Xj ≥ tk . For instance, the split at
the top of the tree results in two large branches.
The left-hand branch corresponds to Years < 4.5
and the right-hand branch corresponds to
Years ≥ 4.5.

• The tree has two internal nodes and three
terminal nodes or leaves. The number in each leaf
is the mean of the response for the observations
that fall there.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

7

Example: Decision tree for the Hitters data, results

Figure 3: Overall, the tree
stratifies/segments the players into
three regions of predictors space:
R1 = {X |Years < 4.5},
R2 = {X |Years ≥ 4.5,Hits < 117.5},
and
R3 = X |Years ≥ 4.5,Hits ≥ 117.5.

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

8

Some vocabulary for tree-based models

• In keeping with the tree analogy, the regions R1, R2, and R3 are known as terminal
nodes or leaves.

• Decision trees are typically drawn upside down, in the sense that the leaves are at the
bottom of the tree.

• The points along the tree where the predictor space is split/segmented/stratified are
referred to as internal nodes.

• In the Hitters tree, the two internal nodes are indicated by the text Years < 4.5
and Hits < 117.5.

9

Some vocabulary for tree-based models

• In keeping with the tree analogy, the regions R1, R2, and R3 are known as terminal
nodes or leaves.

• Decision trees are typically drawn upside down, in the sense that the leaves are at the
bottom of the tree.

• The points along the tree where the predictor space is split/segmented/stratified are
referred to as internal nodes.

• In the Hitters tree, the two internal nodes are indicated by the text Years < 4.5
and Hits < 117.5.

9

Some vocabulary for tree-based models

• In keeping with the tree analogy, the regions R1, R2, and R3 are known as terminal
nodes or leaves.

• Decision trees are typically drawn upside down, in the sense that the leaves are at the
bottom of the tree.

• The points along the tree where the predictor space is split/segmented/stratified are
referred to as internal nodes.

• In the Hitters tree, the two internal nodes are indicated by the text Years < 4.5
and Hits < 117.5.

9

Some vocabulary for tree-based models

• In keeping with the tree analogy, the regions R1, R2, and R3 are known as terminal
nodes or leaves.

• Decision trees are typically drawn upside down, in the sense that the leaves are at the
bottom of the tree.

• The points along the tree where the predictor space is split/segmented/stratified are
referred to as internal nodes.

• In the Hitters tree, the two internal nodes are indicated by the text Years < 4.5
and Hits < 117.5.

9

Interpretation of the results

• Years is the most important factor in determining Salary, and players with less
experience earn a lower Salary than more experienced players.

• Given that a player is less experienced, the number of Hits that he made in the
previous year seems to play little role in his Salary.

• But among the players who have been in the major leagues for five or more years, the
number of Hits made in the previous year does affect Salary, and players who
made more Hits last year tend to have higher Salary.

• Surely an over-simplification, but compared to a regression model, it is easy to display,
interpret, and explain.

10

Interpretation of the results

• Years is the most important factor in determining Salary, and players with less
experience earn a lower Salary than more experienced players.

• Given that a player is less experienced, the number of Hits that he made in the
previous year seems to play little role in his Salary.

• But among the players who have been in the major leagues for five or more years, the
number of Hits made in the previous year does affect Salary, and players who
made more Hits last year tend to have higher Salary.

• Surely an over-simplification, but compared to a regression model, it is easy to display,
interpret, and explain.

10

Interpretation of the results

• Years is the most important factor in determining Salary, and players with less
experience earn a lower Salary than more experienced players.

• Given that a player is less experienced, the number of Hits that he made in the
previous year seems to play little role in his Salary.

• But among the players who have been in the major leagues for five or more years, the
number of Hits made in the previous year does affect Salary, and players who
made more Hits last year tend to have higher Salary.

• Surely an over-simplification, but compared to a regression model, it is easy to display,
interpret, and explain.

10

Interpretation of the results

• Years is the most important factor in determining Salary, and players with less
experience earn a lower Salary than more experienced players.

• Given that a player is less experienced, the number of Hits that he made in the
previous year seems to play little role in his Salary.

• But among the players who have been in the major leagues for five or more years, the
number of Hits made in the previous year does affect Salary, and players who
made more Hits last year tend to have higher Salary.

• Surely an over-simplification, but compared to a regression model, it is easy to display,
interpret, and explain.

10

Prediction via stratification of the feature space

1. We divide the predictor space—that is, the set of possible values for
X1,X2, . . . ,Xp—into J non-overlapping regions, R1,R2, . . . ,RJ .

2. For every observation that falls into the region Rj , where j = 1, . . . , J , we make the
same prediction, which is simply the mean of the response values for the training
observations in Rj .

11

Prediction via stratification of the feature space

1. We divide the predictor space—that is, the set of possible values for
X1,X2, . . . ,Xp—into J non-overlapping regions, R1,R2, . . . ,RJ .

2. For every observation that falls into the region Rj , where j = 1, . . . , J , we make the
same prediction, which is simply the mean of the response values for the training
observations in Rj .

11

Shapes of the regions

• In theory, the regions could have any shape. We choose to divide the predictor space
into (high-dimensional) rectangles or boxes, for simplicity and ease of interpretation of
the resulting model.

• The goal is to find boxes R1, . . . ,RJ that minimize the RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2,

where ŷRj is the mean response for the training observations within the jth box.

12

Shapes of the regions

• In theory, the regions could have any shape. We choose to divide the predictor space
into (high-dimensional) rectangles or boxes, for simplicity and ease of interpretation of
the resulting model.

• The goal is to find boxes R1, . . . ,RJ that minimize the RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2,

where ŷRj is the mean response for the training observations within the jth box.

12

Greedy, rather than exhaustive tree-building

• It is computationally infeasible to consider every possible partition of the feature
space into J boxes.

• For this reason, we take a top-down, greedy approach that is known as recursive binary
splitting.

• The approach is top-down because it begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new branches
further down on the tree.

• It is greedy because at each step of the tree-building process, the best split is made at
that particular step, rather than looking ahead and picking a split that will lead to a
better tree in some future step.

13

Greedy, rather than exhaustive tree-building

• It is computationally infeasible to consider every possible partition of the feature
space into J boxes.

• For this reason, we take a top-down, greedy approach that is known as recursive binary
splitting.

• The approach is top-down because it begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new branches
further down on the tree.

• It is greedy because at each step of the tree-building process, the best split is made at
that particular step, rather than looking ahead and picking a split that will lead to a
better tree in some future step.

13

Greedy, rather than exhaustive tree-building

• It is computationally infeasible to consider every possible partition of the feature
space into J boxes.

• For this reason, we take a top-down, greedy approach that is known as recursive binary
splitting.

• The approach is top-down because it begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new branches
further down on the tree.

• It is greedy because at each step of the tree-building process, the best split is made at
that particular step, rather than looking ahead and picking a split that will lead to a
better tree in some future step.

13

Greedy, rather than exhaustive tree-building

• It is computationally infeasible to consider every possible partition of the feature
space into J boxes.

• For this reason, we take a top-down, greedy approach that is known as recursive binary
splitting.

• The approach is top-down because it begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new branches
further down on the tree.

• It is greedy because at each step of the tree-building process, the best split is made at
that particular step, rather than looking ahead and picking a split that will lead to a
better tree in some future step.

13

More details on the tree-building process

• We first select the predictor Xj and the cutpoint s such that splitting the predictor
space into the regions {X |Xj < s} leads to the greatest possible reduction in RSS.

• Next, we repeat the process, looking for the best predictor and best cutpoint in order
to split the data further so as to minimize the RSS within each of the resulting regions.

• This time, instead of splitting the entire predictor space, we split one of the two
previously identifies regions. We now have three regions.

• Again, we look to split one of these three regions further, so as to minimize the RSS.
The process continues until a stopping criterion is reached; for instance, we may
continue until no region contains more than five observations.

14

More details on the tree-building process

• We first select the predictor Xj and the cutpoint s such that splitting the predictor
space into the regions {X |Xj < s} leads to the greatest possible reduction in RSS.

• Next, we repeat the process, looking for the best predictor and best cutpoint in order
to split the data further so as to minimize the RSS within each of the resulting regions.

• This time, instead of splitting the entire predictor space, we split one of the two
previously identifies regions. We now have three regions.

• Again, we look to split one of these three regions further, so as to minimize the RSS.
The process continues until a stopping criterion is reached; for instance, we may
continue until no region contains more than five observations.

14

More details on the tree-building process

• We first select the predictor Xj and the cutpoint s such that splitting the predictor
space into the regions {X |Xj < s} leads to the greatest possible reduction in RSS.

• Next, we repeat the process, looking for the best predictor and best cutpoint in order
to split the data further so as to minimize the RSS within each of the resulting regions.

• This time, instead of splitting the entire predictor space, we split one of the two
previously identifies regions. We now have three regions.

• Again, we look to split one of these three regions further, so as to minimize the RSS.
The process continues until a stopping criterion is reached; for instance, we may
continue until no region contains more than five observations.

14

More details on the tree-building process

• We first select the predictor Xj and the cutpoint s such that splitting the predictor
space into the regions {X |Xj < s} leads to the greatest possible reduction in RSS.

• Next, we repeat the process, looking for the best predictor and best cutpoint in order
to split the data further so as to minimize the RSS within each of the resulting regions.

• This time, instead of splitting the entire predictor space, we split one of the two
previously identifies regions. We now have three regions.

• Again, we look to split one of these three regions further, so as to minimize the RSS.
The process continues until a stopping criterion is reached; for instance, we may
continue until no region contains more than five observations.

14

Making predictions using regression trees

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

We predict the response for a given
test observation using the mean of
the training observations in the
region into which that test
observation belongs.

Figure 4: Top left: A partition of
two-dimensional feature space that could not
result from recursive binary splitting.

15

Making predictions using regression trees

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

We predict the response for a given
test observation using the mean of
the training observations in the
region into which that test
observation belongs.

Figure 4: Top left: A partition of
two-dimensional feature space that could not
result from recursive binary splitting. Top
right: The output of recursive binary
splitting on a two-dimensional example.

15

Making predictions using regression trees

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

We predict the response for a given
test observation using the mean of
the training observations in the
region into which that test
observation belongs.

Figure 4: Top left: A partition of
two-dimensional feature space that could not
result from recursive binary splitting. Top
right: The output of recursive binary
splitting on a two-dimensional example.
Bottom left: A tree corresponding to the
partition in the top right panel.

15

Making predictions using regression trees

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

We predict the response for a given
test observation using the mean of
the training observations in the
region into which that test
observation belongs.

Figure 4: Top left: A partition of
two-dimensional feature space that could not
result from recursive binary splitting. Top
right: The output of recursive binary
splitting on a two-dimensional example.
Bottom left: A tree corresponding to the
partition in the top right panel. Bottom
right: A perspective plot of the prediction
surface for that tree.

15

Pruning a tree

• The process described above may produce good predictions on the training set, but is
likely to overfit the data, leading to poor test performance.

• A smaller tree with fewer splits (that is, fewer regions R1, . . . ,RJ) might lead to lower
variance and better interpretation at the cost of a little bias.

• One possible alternative to the process described above is to grow the tree only so
long as the decrease in the RSS due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too short-sighted: a seemingly
worthless split early on in the tree might be followed by a very good split—that is, a
split that leads to a large reduction in RSS later on.

16

Pruning a tree

• The process described above may produce good predictions on the training set, but is
likely to overfit the data, leading to poor test performance.

• A smaller tree with fewer splits (that is, fewer regions R1, . . . ,RJ) might lead to lower
variance and better interpretation at the cost of a little bias.

• One possible alternative to the process described above is to grow the tree only so
long as the decrease in the RSS due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too short-sighted: a seemingly
worthless split early on in the tree might be followed by a very good split—that is, a
split that leads to a large reduction in RSS later on.

16

Pruning a tree

• The process described above may produce good predictions on the training set, but is
likely to overfit the data, leading to poor test performance.

• A smaller tree with fewer splits (that is, fewer regions R1, . . . ,RJ) might lead to lower
variance and better interpretation at the cost of a little bias.

• One possible alternative to the process described above is to grow the tree only so
long as the decrease in the RSS due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too short-sighted: a seemingly
worthless split early on in the tree might be followed by a very good split—that is, a
split that leads to a large reduction in RSS later on.

16

Pruning a tree

• The process described above may produce good predictions on the training set, but is
likely to overfit the data, leading to poor test performance.

• A smaller tree with fewer splits (that is, fewer regions R1, . . . ,RJ) might lead to lower
variance and better interpretation at the cost of a little bias.

• One possible alternative to the process described above is to grow the tree only so
long as the decrease in the RSS due to each split exceeds some (high) threshold.

• This strategy will result in smaller trees, but is too short-sighted: a seemingly
worthless split early on in the tree might be followed by a very good split—that is, a
split that leads to a large reduction in RSS later on.

16

Pruning a tree (continued)

• A better strategy is to grow a very large tree T0, and then prune it back in order to
obtain a subtree.

• Cost complexity pruning—also known as weakest link pruning—is used to do this.
• We consider a sequence of trees indexed by a nonnegative tuning parameter α. To
each value of α corresponds a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible.
• Here |T | indicates the number of terminal nodes or leaves of the tree T , Rm is the box
(i.e., the subset of predictor space) corresponding to the mth terminal node, and ŷRm
is the mean of the training observations in Rm.

17

Pruning a tree (continued)

• A better strategy is to grow a very large tree T0, and then prune it back in order to
obtain a subtree.

• Cost complexity pruning—also known as weakest link pruning—is used to do this.
• We consider a sequence of trees indexed by a nonnegative tuning parameter α. To
each value of α corresponds a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible.
• Here |T | indicates the number of terminal nodes or leaves of the tree T , Rm is the box
(i.e., the subset of predictor space) corresponding to the mth terminal node, and ŷRm
is the mean of the training observations in Rm.

17

Pruning a tree (continued)

• A better strategy is to grow a very large tree T0, and then prune it back in order to
obtain a subtree.

• Cost complexity pruning—also known as weakest link pruning—is used to do this.
• We consider a sequence of trees indexed by a nonnegative tuning parameter α. To
each value of α corresponds a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible.
• Here |T | indicates the number of terminal nodes or leaves of the tree T , Rm is the box
(i.e., the subset of predictor space) corresponding to the mth terminal node, and ŷRm
is the mean of the training observations in Rm.

17

Pruning a tree (continued)

• A better strategy is to grow a very large tree T0, and then prune it back in order to
obtain a subtree.

• Cost complexity pruning—also known as weakest link pruning—is used to do this.
• We consider a sequence of trees indexed by a nonnegative tuning parameter α. To
each value of α corresponds a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible.
• Here |T | indicates the number of terminal nodes or leaves of the tree T , Rm is the box
(i.e., the subset of predictor space) corresponding to the mth terminal node, and ŷRm
is the mean of the training observations in Rm.

17

Choosing the best subtree

• The tuning parameter α controls a trade-off between the subtree’s complexity and its
fit to the training data.

• We select an optimal value α̂ using cross-validation.
• We then return to the full data set and obtain the subtree corresponding to α̂

18

Choosing the best subtree

• The tuning parameter α controls a trade-off between the subtree’s complexity and its
fit to the training data.

• We select an optimal value α̂ using cross-validation.
• We then return to the full data set and obtain the subtree corresponding to α̂

18

Choosing the best subtree

• The tuning parameter α controls a trade-off between the subtree’s complexity and its
fit to the training data.

• We select an optimal value α̂ using cross-validation.
• We then return to the full data set and obtain the subtree corresponding to α̂

18

Summary of the tree-building algorithm

Algorithm

1. Use recursive binary splitting to grow a large tree on the training data, stopping only
when each terminal node contains fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best
subtrees, as a function of α.

3. Use k-fold cross-validation to choose α. For each k = 1, . . . ,K :
3.1 Repeat Steps 1 and 2 on the K−1

K th fraction of the training data, excluding the kth fold.
3.2 Evaluate the mean squared prediction error on the data in the left-out kth fold, as a

function of α.

Average the results and pick α to minimize the average error.
4. Return the subtree from Step 2 that corresponds to the chosen value of α.

19

Hitters example, continued

• First, we randomly divided the data set in half, yielding 132 observations in the
training set and 131 observations in the test set.

• We then built a large regression tree on the training data and varied α in order to
create subtrees with different numbers of terminal nodes.

• Finally, we performed six-fold cross-validation in order to estimate the cross-validated
MSE of the trees as a function of α.

20

Hitters example, continued

• First, we randomly divided the data set in half, yielding 132 observations in the
training set and 131 observations in the test set.

• We then built a large regression tree on the training data and varied α in order to
create subtrees with different numbers of terminal nodes.

• Finally, we performed six-fold cross-validation in order to estimate the cross-validated
MSE of the trees as a function of α.

20

Hitters example, continued

• First, we randomly divided the data set in half, yielding 132 observations in the
training set and 131 observations in the test set.

• We then built a large regression tree on the training data and varied α in order to
create subtrees with different numbers of terminal nodes.

• Finally, we performed six-fold cross-validation in order to estimate the cross-validated
MSE of the trees as a function of α.

20

Hitters example, unpruned regression tree

Figure 5: Regression tree
analysis for the Hitters
data. The unpruned tree that
results from top-down greedy
splitting on the training data
is shown.

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

21

Hitters example training, cross-validation, test MSE

Figure 6: Regression tree
analysis for Hitters data.
The training, cross-validation,
and test MSE are shown as a
function of the number of
terminal nodes in the pruned
tree. Standard error bands
are displayed. Minimum
cross-validation error occurs
at a tree size of three.

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

22

Regression trees Review

Fill in the blanks

1. Predictive power of individual trees is typically than that of other methods.
2. The regions in the predictor spaces produced by a regression tree are called or

.
3. The points at which the tree splits are called .

True or false?

1. Variables appearing higher up in the tree are more predictively important.
2. Terminal nodes may overlap.
3. For all observations within a given terminal node, a regression tree will make the same
prediction.

4. Recursive binary splitting chooses from among all possible partitions of the feature space.
5. Cost complexity pruning is used to reduce the risk of overfitting.

23

Regression trees Review

Fill in the blanks

1. Predictive power of individual trees is typically lower than that of other methods.
2. The regions in the predictor spaces produced by a regression tree are called leaves or terminal
nodes.

3. The points at which the tree splits are called internal nodes.

True or false?

1. T Variables appearing higher up in the tree are more predictively important.
2. F Terminal nodes may overlap.
3. T For all observations within a given terminal node, a regression tree will make the same
prediction.

4. F Recursive binary splitting chooses from among all possible partitions of the feature space.
5. T Cost complexity pruning is used to reduce the risk of overfitting.

23

The basics of decision trees

Classification trees

Classification trees

• Similar to regression trees, but for qualitative rather than quantitative response.
• Prediction is that each observation belongs to the most commonly occurring class of
training observations in its region.

24

Classification trees

• Similar to regression trees, but for qualitative rather than quantitative response.
• Prediction is that each observation belongs to the most commonly occurring class of
training observations in its region.

24

Classification trees, details

• Also uses recursive binary splitting, like regression trees.
• RSS cannot be used as a splitting criterion.
• An alternative to RSS is the classification error rate; the fraction of training
observations in each region that don’t belong to the most common class:

E = 1−max
k

(p̂mk)

where p̂mk is the proportion of training observations in the mth region that are from
the kth class.

• Classification error is not sufficiently sensitive for tree-growing and in practice two
other measures introduced on the next slide are preferred.

25

Classification trees, details

• Also uses recursive binary splitting, like regression trees.
• RSS cannot be used as a splitting criterion.
• An alternative to RSS is the classification error rate; the fraction of training
observations in each region that don’t belong to the most common class:

E = 1−max
k

(p̂mk)

where p̂mk is the proportion of training observations in the mth region that are from
the kth class.

• Classification error is not sufficiently sensitive for tree-growing and in practice two
other measures introduced on the next slide are preferred.

25

Classification trees, details

• Also uses recursive binary splitting, like regression trees.
• RSS cannot be used as a splitting criterion.
• An alternative to RSS is the classification error rate; the fraction of training
observations in each region that don’t belong to the most common class:

E = 1−max
k

(p̂mk)

where p̂mk is the proportion of training observations in the mth region that are from
the kth class.

• Classification error is not sufficiently sensitive for tree-growing and in practice two
other measures introduced on the next slide are preferred.

25

Classification trees, details

• Also uses recursive binary splitting, like regression trees.
• RSS cannot be used as a splitting criterion.
• An alternative to RSS is the classification error rate; the fraction of training
observations in each region that don’t belong to the most common class:

E = 1−max
k

(p̂mk)

where p̂mk is the proportion of training observations in the mth region that are from
the kth class.

• Classification error is not sufficiently sensitive for tree-growing and in practice two
other measures introduced on the next slide are preferred.

25

Definition of splitting criteria: Gini index

Gini index
The Gini index is a measure of total variance across the K classes given by

G =

K∑
k=1

p̂mk(1− p̂mk).

It takes a small value if all of the p̂mk ’s are close to zero or one.

The Gini index is referred to as a measure of node purity—a small value indicates that a
node contains predominantly observations from a single class.

26

Definition of splitting criteria: Gini index

Gini index
The Gini index is a measure of total variance across the K classes given by

G =

K∑
k=1

p̂mk(1− p̂mk).

It takes a small value if all of the p̂mk ’s are close to zero or one.

The Gini index is referred to as a measure of node purity—a small value indicates that a
node contains predominantly observations from a single class.

26

Definition of splitting criteria: Deviance, cross-entropy

Deviance, cross-entropy
An alternative to the Gini index is the deviance or cross-entropy given by

D = −
K∑
k=1

p̂mk log p̂mk .

The Gini coefficient and the cross-entropy are numerically very similar.

27

Definition of splitting criteria: Deviance, cross-entropy

Deviance, cross-entropy
An alternative to the Gini index is the deviance or cross-entropy given by

D = −
K∑
k=1

p̂mk log p̂mk .

The Gini coefficient and the cross-entropy are numerically very similar.

27

Example: Classification trees applied to Heart data

• These data contain a binary outcome HD for 303 patients who presented with chest
pain.

• An outcome value of Yes indicates the presence of a heart disease based on an
angiographic test, while No means no heart disease.

• There are 13 predictors including Age, Sex, Chol (a cholesterol measurement), and
other heart and lung function measurements.

• Cross-validation yields a tree with six terminal nodes. See next figure.

28

Example: Classification trees applied to Heart data

• These data contain a binary outcome HD for 303 patients who presented with chest
pain.

• An outcome value of Yes indicates the presence of a heart disease based on an
angiographic test, while No means no heart disease.

• There are 13 predictors including Age, Sex, Chol (a cholesterol measurement), and
other heart and lung function measurements.

• Cross-validation yields a tree with six terminal nodes. See next figure.

28

Example: Classification trees applied to Heart data

• These data contain a binary outcome HD for 303 patients who presented with chest
pain.

• An outcome value of Yes indicates the presence of a heart disease based on an
angiographic test, while No means no heart disease.

• There are 13 predictors including Age, Sex, Chol (a cholesterol measurement), and
other heart and lung function measurements.

• Cross-validation yields a tree with six terminal nodes. See next figure.

28

Example: Classification trees applied to Heart data

• These data contain a binary outcome HD for 303 patients who presented with chest
pain.

• An outcome value of Yes indicates the presence of a heart disease based on an
angiographic test, while No means no heart disease.

• There are 13 predictors including Age, Sex, Chol (a cholesterol measurement), and
other heart and lung function measurements.

• Cross-validation yields a tree with six terminal nodes. See next figure.

28

Example: Classification trees applied to Heart data

Figure 7: Heart data. Top: The
unpruned tree. Bottom left:
Cross-validation error, training,
and test error, for different sizes of
the pruned tree. Bottom right:
The pruned tree corresponding to
the minimal cross-validation error.

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

29

Classification trees Review

Fill in the blanks

1. In classification problems, the RSS is not defined. Instead, one might want to use the
.

2. An optimally sensitive error measure is needed; two such measures include the and
the .

True or false?

1. Classification trees predict that all observations within a terminal node have the most
commonly occurring value in that node.

2. The Gini index is close to zero when there is a lot of variation within a given class.

30

Classification trees Review

Fill in the blanks

1. In classification problems, the RSS is not defined. Instead, one might want to use the
classification error rate.

2. An optimally sensitive error measure is needed; two such measures include the Gini index and
the deviance.

True or false?

1. T Classification trees predict that all observations within a terminal node have the most
commonly occurring value in that node.

2. F The Gini index is close to zero when there is a lot of variation within a given class.

30

The basics of decision trees

Trees versus linear models

Trees versus linear models

Figure 8: Top row: True linear
boundary; Bottom row: true
non-linear boundary; Left column:
linear model; Right column:
tree-based model.

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

31

The basics of decision trees

Advantages and disadvantages of
trees

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Advantages and disadvantages of trees

Advantages

• Easy to explain; even easier than linear regression!
• Some people believe that decision trees more closely mirror human decision-making
than do the regression and classification approaches seen in previous chapters.

• Trees can be displayed graphically and are easily interpreted even by a non-expert
(especially if they are small).

• Can handle qualitative predictors without dummies.

Disadvantages
Lower predictive accuracy than other regression and classification approaches we cover.

However, by aggregating many decision trees, the predictive performance of trees can be
substantially improved. We introduce such methods next.

32

Bagging, random forests,
boosting

Bagging, random forests,
boosting

Bagging

Bootstrap aggregation/bagging

• General-purpose procedure for reducing variance of statistical learning methods.
• Particularly useful and frequently used in decision trees.

Recap: Variance of a set of IID random variables
Recall that for n independent observations Z1, . . . ,Zn, each with variance σ2, the variance
of Z̄ = 1

n
∑n
i=1 Zi is σ2/n.

Averaging a set of observations reduces variance. This is nice to know but not practical
since we generally do not have access to multiple training sets.

33

Bootstrap aggregation/bagging

• General-purpose procedure for reducing variance of statistical learning methods.
• Particularly useful and frequently used in decision trees.

Recap: Variance of a set of IID random variables
Recall that for n independent observations Z1, . . . ,Zn, each with variance σ2, the variance
of Z̄ = 1

n
∑n
i=1 Zi is σ2/n.

Averaging a set of observations reduces variance. This is nice to know but not practical
since we generally do not have access to multiple training sets.

33

Bootstrap aggregation/bagging

• General-purpose procedure for reducing variance of statistical learning methods.
• Particularly useful and frequently used in decision trees.

Recap: Variance of a set of IID random variables
Recall that for n independent observations Z1, . . . ,Zn, each with variance σ2, the variance
of Z̄ = 1

n
∑n
i=1 Zi is σ2/n.

Averaging a set of observations reduces variance. This is nice to know but not practical
since we generally do not have access to multiple training sets.

33

Bootstrap aggregation/bagging

• General-purpose procedure for reducing variance of statistical learning methods.
• Particularly useful and frequently used in decision trees.

Recap: Variance of a set of IID random variables
Recall that for n independent observations Z1, . . . ,Zn, each with variance σ2, the variance
of Z̄ = 1

n
∑n
i=1 Zi is σ2/n.

Averaging a set of observations reduces variance. This is nice to know but not practical
since we generally do not have access to multiple training sets.

33

Bootstrap aggregation/bagging (continued)

• We can bootstrap by taking repeated samples from the (single) training data set.
• We generate B bootstrapped training data sets and then train our method on the bth
bootstrapped training set to get f̂ ∗b(x), the prediction at a point x.

• Then average all predictions to get

f̂bag(x) =
1
B

B∑
b=1

f̂ *b(x).

• This process is called bootstrap aggregation or bagging.

34

Bootstrap aggregation/bagging (continued)

• We can bootstrap by taking repeated samples from the (single) training data set.
• We generate B bootstrapped training data sets and then train our method on the bth
bootstrapped training set to get f̂ ∗b(x), the prediction at a point x.

• Then average all predictions to get

f̂bag(x) =
1
B

B∑
b=1

f̂ *b(x).

• This process is called bootstrap aggregation or bagging.

34

Bootstrap aggregation/bagging (continued)

• We can bootstrap by taking repeated samples from the (single) training data set.
• We generate B bootstrapped training data sets and then train our method on the bth
bootstrapped training set to get f̂ ∗b(x), the prediction at a point x.

• Then average all predictions to get

f̂bag(x) =
1
B

B∑
b=1

f̂ *b(x).

• This process is called bootstrap aggregation or bagging.

34

Bootstrap aggregation/bagging (continued)

• We can bootstrap by taking repeated samples from the (single) training data set.
• We generate B bootstrapped training data sets and then train our method on the bth
bootstrapped training set to get f̂ ∗b(x), the prediction at a point x.

• Then average all predictions to get

f̂bag(x) =
1
B

B∑
b=1

f̂ *b(x).

• This process is called bootstrap aggregation or bagging.

34

Bagging classification trees

• Above description was for regression trees.
• For classification trees, record class predicted by each of the B trees and take majority
vote.

• Overall prediction is most commonly occurring class among B predictions.

35

Bagging classification trees

• Above description was for regression trees.
• For classification trees, record class predicted by each of the B trees and take majority
vote.

• Overall prediction is most commonly occurring class among B predictions.

35

Bagging classification trees

• Above description was for regression trees.
• For classification trees, record class predicted by each of the B trees and take majority
vote.

• Overall prediction is most commonly occurring class among B predictions.

35

Example: Bagging the Heart data

Figure 9: Bagging and random
forest2 results for Heart data.
Test error (black and orange)
shown as a function of B (number
of bootstrap sets). Random forests
were applied with m =

√p.
Dashed line indicates test error
resulting from single classification
tree. Green and blue traces show
OOB error, which by chance is
considerably lower in this case.

0 50 100 150 200 250 300

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Trees

E
rr

or

Test: Bagging
Test: RandomForest
OOB: Bagging
OOB: RandomForest

2Random forest methods are covered from Slide 39 onwards.

36

Out-of-bag error estimation

• Straightforward way to estimate test error of bagged model.
• Recall that key to bagging is repeated tree fitting to bootstrapped subsets of
observations. On average, each bagged tree uses about 2/3 of the observations.

• Remaining 1/3 not used is called out-of-bag (OOB) observations.
• Can predict response for ith observation using each tree in which that observation was
OOB. Results in B/3 predictions for ith observation, which we can average.

• This is essentially the LOO cross-validation error for bagging, if B is large.

37

Out-of-bag error estimation

• Straightforward way to estimate test error of bagged model.
• Recall that key to bagging is repeated tree fitting to bootstrapped subsets of
observations. On average, each bagged tree uses about 2/3 of the observations.

• Remaining 1/3 not used is called out-of-bag (OOB) observations.
• Can predict response for ith observation using each tree in which that observation was
OOB. Results in B/3 predictions for ith observation, which we can average.

• This is essentially the LOO cross-validation error for bagging, if B is large.

37

Out-of-bag error estimation

• Straightforward way to estimate test error of bagged model.
• Recall that key to bagging is repeated tree fitting to bootstrapped subsets of
observations. On average, each bagged tree uses about 2/3 of the observations.

• Remaining 1/3 not used is called out-of-bag (OOB) observations.
• Can predict response for ith observation using each tree in which that observation was
OOB. Results in B/3 predictions for ith observation, which we can average.

• This is essentially the LOO cross-validation error for bagging, if B is large.

37

Out-of-bag error estimation

• Straightforward way to estimate test error of bagged model.
• Recall that key to bagging is repeated tree fitting to bootstrapped subsets of
observations. On average, each bagged tree uses about 2/3 of the observations.

• Remaining 1/3 not used is called out-of-bag (OOB) observations.
• Can predict response for ith observation using each tree in which that observation was
OOB. Results in B/3 predictions for ith observation, which we can average.

• This is essentially the LOO cross-validation error for bagging, if B is large.

37

Out-of-bag error estimation

• Straightforward way to estimate test error of bagged model.
• Recall that key to bagging is repeated tree fitting to bootstrapped subsets of
observations. On average, each bagged tree uses about 2/3 of the observations.

• Remaining 1/3 not used is called out-of-bag (OOB) observations.
• Can predict response for ith observation using each tree in which that observation was
OOB. Results in B/3 predictions for ith observation, which we can average.

• This is essentially the LOO cross-validation error for bagging, if B is large.

37

Bagging Review

True or false?

1. Bagging means fitting a large number of trees to bootstrapped subsets of the
training data and averaging their predictions.

2. Bagging can only be applied to regression trees, not classification trees.

38

Bagging Review

True or false?

1. T Bagging means fitting a large number of trees to bootstrapped subsets of the
training data and averaging their predictions.

2. F Bagging can only be applied to regression trees, not classification trees.

38

Bagging, random forests,
boosting

Random forests

Random forests

• Improvement over bagged trees using a tweak that decorrelates trees. Reduces
variance when we average trees.

• Like bagging, build several decision trees on bootstrapped training samples.
• Unlike bagging, when building these trees, each time a split is considered, random
selection of m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors.

• A fresh selection of m predictors is taken at each split and typically we choose
m ≈ √p, that is, the number of predictors considered at each split is approximately
equal to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

39

Random forests

• Improvement over bagged trees using a tweak that decorrelates trees. Reduces
variance when we average trees.

• Like bagging, build several decision trees on bootstrapped training samples.
• Unlike bagging, when building these trees, each time a split is considered, random
selection of m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors.

• A fresh selection of m predictors is taken at each split and typically we choose
m ≈ √p, that is, the number of predictors considered at each split is approximately
equal to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

39

Random forests

• Improvement over bagged trees using a tweak that decorrelates trees. Reduces
variance when we average trees.

• Like bagging, build several decision trees on bootstrapped training samples.
• Unlike bagging, when building these trees, each time a split is considered, random
selection of m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors.

• A fresh selection of m predictors is taken at each split and typically we choose
m ≈ √p, that is, the number of predictors considered at each split is approximately
equal to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

39

Example: Random forests for gene expression data

• We applied random forests to a high-dimensional biological data set consisting of
expression measurements of 4,718 genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans and individual genes have different levels of
activity, or expression, in particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15 different levels: either
normal or one of 14 different types of cancer.

• We use random forests to predict cancer type based on the 500 genes that have the
largest variance in the training set.

• We randomly divided the observations into a training and a test set, and applied
random forests to the training set for three different values of the number of splitting
variables m.

40

Example: Random forests for gene expression data

• We applied random forests to a high-dimensional biological data set consisting of
expression measurements of 4,718 genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans and individual genes have different levels of
activity, or expression, in particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15 different levels: either
normal or one of 14 different types of cancer.

• We use random forests to predict cancer type based on the 500 genes that have the
largest variance in the training set.

• We randomly divided the observations into a training and a test set, and applied
random forests to the training set for three different values of the number of splitting
variables m.

40

Example: Random forests for gene expression data

• We applied random forests to a high-dimensional biological data set consisting of
expression measurements of 4,718 genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans and individual genes have different levels of
activity, or expression, in particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15 different levels: either
normal or one of 14 different types of cancer.

• We use random forests to predict cancer type based on the 500 genes that have the
largest variance in the training set.

• We randomly divided the observations into a training and a test set, and applied
random forests to the training set for three different values of the number of splitting
variables m.

40

Example: Random forests for gene expression data

• We applied random forests to a high-dimensional biological data set consisting of
expression measurements of 4,718 genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans and individual genes have different levels of
activity, or expression, in particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15 different levels: either
normal or one of 14 different types of cancer.

• We use random forests to predict cancer type based on the 500 genes that have the
largest variance in the training set.

• We randomly divided the observations into a training and a test set, and applied
random forests to the training set for three different values of the number of splitting
variables m.

40

Example: Random forests for gene expression data

• We applied random forests to a high-dimensional biological data set consisting of
expression measurements of 4,718 genes measured on tissue samples from 349 patients.

• There are around 20,000 genes in humans and individual genes have different levels of
activity, or expression, in particular cells, tissues, and biological conditions.

• Each of the patient samples has a qualitative label with 15 different levels: either
normal or one of 14 different types of cancer.

• We use random forests to predict cancer type based on the 500 genes that have the
largest variance in the training set.

• We randomly divided the observations into a training and a test set, and applied
random forests to the training set for three different values of the number of splitting
variables m.

40

Example: Random forests for gene expression data

Figure 10: Results from random
forests for the 15-class gene expression
data set with p = 500 predictors. The
test error is displayed as a function of
the number of trees. Each colored line
corresponds to a different value of m,
the number of predictors available for
splitting at each interior tree node.
Random forests (m > p) lead to a slight
improvement over bagging (m = p). A
single classification tree has an error
rate of 45.7%.

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees
T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

m=p

m=p/2

m= p

41

Random forests Review

True or false?

1. Random forest models are an extension of bagging.
2. Random forest models reduce variance by producing trees that are less strongly
correlated than in bagging.

3. In a random forest model, each new tree is fit to a bootstrapped sample from the
whole set of predictors.

42

Random forests Review

True or false?

1. T Random forest models are an extension of bagging.
2. T Random forest models reduce variance by producing trees that are less strongly
correlated than in bagging.

3. F In a random forest model, each new tree is fit to a bootstrapped sample from the
whole set of predictors.

42

Bagging, random forests,
boosting

Boosting

Boosting

• Like bagging, general approach applicable to many statistical learning methods in
regression or classification. We only discuss boosting for decision trees.

• Bagging creates multiple copies of the original training data using bootstrap; fitting a
separate tree to subsets of each copy and then recombining all of the trees in order to
create a single predictive model.

• Each tree is built on a bootstrap data set, independent of the other trees.
• Boosting works similarly, but trees are grown sequentially: each tree is grown from
information from previously grown trees.

43

Boosting

• Like bagging, general approach applicable to many statistical learning methods in
regression or classification. We only discuss boosting for decision trees.

• Bagging creates multiple copies of the original training data using bootstrap; fitting a
separate tree to subsets of each copy and then recombining all of the trees in order to
create a single predictive model.

• Each tree is built on a bootstrap data set, independent of the other trees.
• Boosting works similarly, but trees are grown sequentially: each tree is grown from
information from previously grown trees.

43

Boosting

• Like bagging, general approach applicable to many statistical learning methods in
regression or classification. We only discuss boosting for decision trees.

• Bagging creates multiple copies of the original training data using bootstrap; fitting a
separate tree to subsets of each copy and then recombining all of the trees in order to
create a single predictive model.

• Each tree is built on a bootstrap data set, independent of the other trees.
• Boosting works similarly, but trees are grown sequentially: each tree is grown from
information from previously grown trees.

43

Boosting

• Like bagging, general approach applicable to many statistical learning methods in
regression or classification. We only discuss boosting for decision trees.

• Bagging creates multiple copies of the original training data using bootstrap; fitting a
separate tree to subsets of each copy and then recombining all of the trees in order to
create a single predictive model.

• Each tree is built on a bootstrap data set, independent of the other trees.
• Boosting works similarly, but trees are grown sequentially: each tree is grown from
information from previously grown trees.

43

Boosting algorithm for regression trees

Algorithm

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.
2. For b = 1, 2, . . . ,B, repeat:

2.1 Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training data (X , r).
2.2 Update f̂ by adding in a shrunken version of the new tree:

f̂ (x)← f̂ (x) + λf̂ b(x).

2.3 Update the residuals,
ri ← ri − λf̂ b(xi).

3. Output the boosted model,

f̂ (x) =
B∑
b=1

λf̂ b(x).

44

The idea behind boosting for regression trees

• Unlike fitting a single large decision tree to the data, which amounts to fitting the data
hard and potentially overfitting, the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the residuals from the model. We
then add this new decision tree into the fitted function in order to update the
residuals.

• Each of these trees can be rather small, with just a few terminal nodes, determined by
the parameter d in the algorithm.

• By fitting small trees to the residuals, we slowly improve f̂ in areas wehre it does not
perform well. The shrinkage parameter λ slows the process down even further,
allowing more and different shaped trees to attack the residuals.

45

The idea behind boosting for regression trees

• Unlike fitting a single large decision tree to the data, which amounts to fitting the data
hard and potentially overfitting, the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the residuals from the model. We
then add this new decision tree into the fitted function in order to update the
residuals.

• Each of these trees can be rather small, with just a few terminal nodes, determined by
the parameter d in the algorithm.

• By fitting small trees to the residuals, we slowly improve f̂ in areas wehre it does not
perform well. The shrinkage parameter λ slows the process down even further,
allowing more and different shaped trees to attack the residuals.

45

The idea behind boosting for regression trees

• Unlike fitting a single large decision tree to the data, which amounts to fitting the data
hard and potentially overfitting, the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the residuals from the model. We
then add this new decision tree into the fitted function in order to update the
residuals.

• Each of these trees can be rather small, with just a few terminal nodes, determined by
the parameter d in the algorithm.

• By fitting small trees to the residuals, we slowly improve f̂ in areas wehre it does not
perform well. The shrinkage parameter λ slows the process down even further,
allowing more and different shaped trees to attack the residuals.

45

The idea behind boosting for regression trees

• Unlike fitting a single large decision tree to the data, which amounts to fitting the data
hard and potentially overfitting, the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the residuals from the model. We
then add this new decision tree into the fitted function in order to update the
residuals.

• Each of these trees can be rather small, with just a few terminal nodes, determined by
the parameter d in the algorithm.

• By fitting small trees to the residuals, we slowly improve f̂ in areas wehre it does not
perform well. The shrinkage parameter λ slows the process down even further,
allowing more and different shaped trees to attack the residuals.

45

Example: Boosting for gene expression data

Figure 11: Results from performing
boosting and random forests on 15-class
gene expression data set to predict
cancer versus normal. The test error is
displayed as a function of the number of
trees. For the two boosted models,
λ = 0.01. Depth-1 trees slightly
outperform depth-2 trees, and both
outperform the random forest, although
the standard errors are around 0.02,
making none of these differences
significant. The test error rate for a
single tree is 24%.

0 1000 2000 3000 4000 5000

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Number of Trees
T
e
s
t
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Boosting: depth=1

Boosting: depth=2

RandomForest: m= p

46

Tuning parameters for boosting

• The number of trees B. Unlike bagging and random forests, boosting can overfit if B
is too large, although this overfitting tends to occur slowly if at all. We use
cross-validation to select B.

• The shrinkage parameter λ, a small positive number. This controls the rate at which
boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on
the problem. Very small λ can require using a very large value of B to achieve good
performance.

• The number of splits d in each tree, which controls the complexity of the boosted
ensemble. Often d = 1 works well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More generally d is the interaction
depth, and controls the interaction order of the boosted model, since d splits can
involve at most d variables.

47

Tuning parameters for boosting

• The number of trees B. Unlike bagging and random forests, boosting can overfit if B
is too large, although this overfitting tends to occur slowly if at all. We use
cross-validation to select B.

• The shrinkage parameter λ, a small positive number. This controls the rate at which
boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on
the problem. Very small λ can require using a very large value of B to achieve good
performance.

• The number of splits d in each tree, which controls the complexity of the boosted
ensemble. Often d = 1 works well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More generally d is the interaction
depth, and controls the interaction order of the boosted model, since d splits can
involve at most d variables.

47

Tuning parameters for boosting

• The number of trees B. Unlike bagging and random forests, boosting can overfit if B
is too large, although this overfitting tends to occur slowly if at all. We use
cross-validation to select B.

• The shrinkage parameter λ, a small positive number. This controls the rate at which
boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on
the problem. Very small λ can require using a very large value of B to achieve good
performance.

• The number of splits d in each tree, which controls the complexity of the boosted
ensemble. Often d = 1 works well, in which case each tree is a stump, consisting of a
single split and resulting in an additive model. More generally d is the interaction
depth, and controls the interaction order of the boosted model, since d splits can
involve at most d variables.

47

Boosting Review

Fill in the blanks

1. The parameter controlling the rate of learning is denoted by .
2. The parameter controlling the number of trees fit is denoted by .

True or false?

1. Boosting grows additional trees sequentially, the next tree learning from the
residuals of the current one.

2. A smaller B will typically require a larger λ and vice versa.

48

Boosting Review

Fill in the blanks

1. The parameter controlling the rate of learning is denoted by λ .
2. The parameter controlling the number of trees fit is denoted by B .

True or false?

1. T Boosting grows additional trees sequentially, the next tree learning from the
residuals of the current one.

2. T A smaller B will typically require a larger λ and vice versa.

48

Conclusion

• Decision trees are simple and interpretable models for regression and classification.
• However they are often note competitive with other methods in terms of prediction
accuracy.

• Bagging, random forests and boosting are good methods for improving the prediction
accuracy of trees. They work by growing many trees on the training data and then
combining the predictions of the resulting ensemble of trees.

• The latter two methods—random forests and boosting—are among the state-of-the-art
methods for supervised learning. However their results can be difficult to interpret.

49

Conclusion

• Decision trees are simple and interpretable models for regression and classification.
• However they are often note competitive with other methods in terms of prediction
accuracy.

• Bagging, random forests and boosting are good methods for improving the prediction
accuracy of trees. They work by growing many trees on the training data and then
combining the predictions of the resulting ensemble of trees.

• The latter two methods—random forests and boosting—are among the state-of-the-art
methods for supervised learning. However their results can be difficult to interpret.

49

Conclusion

• Decision trees are simple and interpretable models for regression and classification.
• However they are often note competitive with other methods in terms of prediction
accuracy.

• Bagging, random forests and boosting are good methods for improving the prediction
accuracy of trees. They work by growing many trees on the training data and then
combining the predictions of the resulting ensemble of trees.

• The latter two methods—random forests and boosting—are among the state-of-the-art
methods for supervised learning. However their results can be difficult to interpret.

49

Conclusion

• Decision trees are simple and interpretable models for regression and classification.
• However they are often note competitive with other methods in terms of prediction
accuracy.

• Bagging, random forests and boosting are good methods for improving the prediction
accuracy of trees. They work by growing many trees on the training data and then
combining the predictions of the resulting ensemble of trees.

• The latter two methods—random forests and boosting—are among the state-of-the-art
methods for supervised learning. However their results can be difficult to interpret.

49

This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.

50

