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Unsupervised learning

• Most of this course focuses on supervised learning methods such as regression and
classification.

• In that setting we observe both a set of features X1,X2, . . . ,Xp for each object and a
response or outcome variable Y . The goal is to predict Y using X1,X2, . . . ,Xp.

• Here instead we focus on unsupervised learning, where we observe only the features
X1,X2, . . . ,Xp. We are not interested in prediction because we do not have an
associated response variable Y .
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The goals of unsupervised learning

• Discover interesting things about X1,X2, . . . ,Xp.
• Find informative ways to visualize the data
• Find sets of observations that are similar
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This course covers two methods in unsupervised learning

• Principal components analysis (PCA) is a tool for visualization or for pre-processing
before applying supervised learning techniques.

• Clustering is a class of methods for discovering meaningful subsets of similar
observations within the data.
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The challenge of unsupervised
learning



The challenge of unsupervised learning

• More subjective than supervised learning
• Lack of response observations means goals are less obvious
• Despite these challenges, there are useful applications that don’t require a response

variable, including:
• subsets of breast cancer patient data help distinguish different cancer types based on gene

expression measurements
• shoppers can be clustered by their browsing and purchase histories
• movies can be clustered by the ratings assigned by movie viewers
• etc.
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Unlabeled data is easy to obtain

• Getting unlabeled data is easier than getting labeled data, the latter typically requiring
processing by humans.

• For example, is a given movie review favorable or not? Answering this question with
yes or not would turn the data into labeled data but may be a non-obvious task.
Unsupervised methods can simply use the movie ratings unlabelled.
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Principal components analysis



Principle components analysis reveals structure of data

• Lower-dimensional representation of a dataset via a sequence of linear combinations of
the variables that are mutually uncorrelated and explain the largest possible share of
total variation.

• Dimension reduction also makes data more amenable to visualization because
high-dimensional datasets are hard to visualize.
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How does PCA work?

• The first principal component of a set of features X1,X2, . . . ,Xp is the normalized
linear combination of the features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp

that has the largest variance. Normalized means that
∑p
j=1 φ

2
j1 = 1.

• We refer to the elements φ11, . . . , φp1 as the loadings of the first principal component;
together, they make up the principal component loading vector, φ1 = (φ11φ21 · · ·φp1)T .

• Constrain the loadings so their sum of squares is one. Otherwise setting them
arbitrarily large would make the variance arbitrarily large.
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Example: Population size and ad spending
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Figure 1: The population size (pop) and ad spending (ad) for 100 cities shown as purple circles.
Green solid line is first principal component direction. Blue dashed line is second principal
component direction. 9



How principal components are calculated

• Suppose we have an n × p data set X. Since we are only interested in variance, we
assume that each of the variables in X has been centered to have mean zero (that is,
the column means of X are zero).

• We then look for the linear combination of the sample features values of the form

zi1 = φ11xi1 + φ21xi2 + · · ·+ φp1xip (1)

for i = 1, . . . ,n that has largest sample variance, subject to the constraint that∑p
j=1 φ

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for any values of φj1). Hence the
sample variance of the zi1 can be written as 1

n
∑n
i=1 z2i1.
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How principal components are calculated (cont’d)

Plugging in Eq. 1 the principal component loading vector solves the optimization problem

φ11, . . . , φp1 = argmax
1
n

n∑
i=1

 p∑
j=1

φj1xij

2

.

This problem can be solved via a singular-value decomposition1 of the matrix X, a
standard technique in linear algebra.

We refer to Z1 as the first principal component, with realized values z11, . . . , zn1.

1For this course, it is enough to know that SVD can be used to solve this kind of problem.
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Geometrically, PCA defines a new set of axes for the data

The first principal component

The loading vector φ1 with elements φ11, φ21, . . . , φp1 defines a direction in feature space
along which the data vary the most.

If we project the n data points x1, . . . , xn onto this direction, the projected values are the
principal component scores z11, . . . , zn1.

Further principal components

The second principal component is the linear combination of X1, . . . ,Xp that has maximal
variance among all linear combinations that are uncorrelated with Z1.

The second principal component scores z12, z22, . . . , zn2 take the form

zi2 = φ12xi1 + φ22xi2 + · · ·+ φp2xip,

where φ2 is the second principal component loading vector, with elements φ12, φ22, . . . , φp2.
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Correlation and orthogonality of principal components

Constraining Z2 to be uncorrelated with Z1 (and so on for Z3, etc.) is equivalent to
constraining the direction φ2 to be orthogonal (perpendicular) to the direction φ1.
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Example: PCA of USArrests data

Data set contains number of arrests per 100,000 residents for each of the 50 U.S. states for
the crimes of Assault, Murder, and Rape; along with UrbanPop, the proportion of the
population living in urban areas for each state.

The principal component score vectors have length n = 50, and the principal component
loading vectors have length p = 4.

Data were standardized to mean zero and unit standard deviation before PCA.
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Example: PCA of USArrests data, biplot

Figure 2: Two first principal
components for USArrests data. Blue
state names are scores for first two
principal components. Orange arrows
indicate first two principal component
loading vectors (with axes on top and
right). The loading for Rape on the
first component is 0.54, and its loading
on the second principal component
0.17. This figure is known as a biplot
because it displays both principal
component scores and principal
component loadings.
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Example: PCA of USArrests data, loadings

Z1 Z2

Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
UrbanPop 0.2781989 0.8728062
Rape 0.5434321 0.1673186

Table 1: The principal component loading vectors, φ1 and φ2, for the USArrests data.
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Principal components analysis

Another interpretation of principal
components



PCA finds the (hyper)plane closest to the observations

Figure 3: The first principal
component loading vector defines
the line in p-dimensional space
that is closest to the n
observations, measured by average
squared Euclidean distance. This
notion extends beyond the first
principal component. The first two
principal components then span
the plane that is closest to the n
observations. Colors are for
readability only.
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PCA finds the (hyper)plane closest to the observations

Figure 4: The first two principal
component score vectors give the
coordinates of the projection of the
90 observations onto the plane.
Colors are for readability only.
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Scaling of the variables matters
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Figure 5: If variables are in different units, scaling each to have unit standard deviation is
recommended. If they are in the same units, you might or might not scale the variables.
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Principal components analysis

The proportion of variance
explained



Proportion of variance explained measures PC strength

Total variance in a data set centered to mean zero is
p∑
j=1

Var(Xj) =
p∑
j=1

1
n

n∑
i=1
x2ij ,

and variance explained by mth principal component is

Var(Zm) =
1
n

n∑
i=1
z2im.

One can show that
∑p
j=1 Var(Xj) =

∑M
m=1 Var(Zm), with M = min(n − 1, p); that is, all

PCs jointly explain all of the variance.
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How to calculate proportion of variance explained (PVE)

PVE of mth principal component is given by
∑n

i=1 z
2
im∑p

j=1
∑n

i=1 x2ij
∈ [0, 1].

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Principal Component

P
ro

p
. 

V
a

ri
a

n
c
e

 E
x
p

la
in

e
d

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Principal Component

C
u

m
u

la
ti
ve

 P
ro

p
. 

V
a

ri
a

n
c
e

 E
x
p

la
in

e
d

Figure 6: Left: Scree plot depicting proportion of variance explained by each of the four principle
components in the USArrests data. Right: Cumulative PVE. 21



Principal components analysis

More on PCA



Looking for “elbows” to decide how many PCs to use

When using PCA as summary of data, how many PCs should we retain?

Cross-validation is not available to answer this question because there is no response data.

A scree plot can provide an indication. Look for an “elbow,” a point at which the
additional variation explained by adding PCs decreases significantly.
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Principal components analysis Review

Fill in the blanks

1. The correlation between the variables generated via PCA is .
2. PCA can explain at most of the total variation in the dataset, if all principal

components are retained.

True or false?

1. PCA is a supervised learning method.
2. PCA can be used as a pre-processing step and for visualizing high-dimensional

data sets.
3. PCA provides a lower-dimensional representation of the data set without losing the

variable interpretations.
4. In many applications, a small number of the variables explain a large amount of

their total variation, which PCA can reveal by computing proportion of variance
explained.

23



Principal components analysis Review

Fill in the blanks

1. The correlation between the variables generated via PCA is zero.
2. PCA can explain at most 100% of the total variation in the dataset, if all principal

components are retained.

True or false?

1. F PCA is a supervised learning method.
2. T PCA can be used as a pre-processing step and for visualizing high-dimensional

data sets.
3. F PCA provides a lower-dimensional representation of the data set without losing the

variable interpretations.
4. T In many applications, a small number of the variables explain a large amount of

their total variation, which PCA can reveal by computing proportion of variance
explained.
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Clustering methods



Clustering is a set of methods for finding similar subsets

• Clusters are subsets of the data that are similar in some meaningful sense.
• Partition of data set into distinct sets, such that elements in each set are similar to

one another.
• What do we mean by similar?
• Often specific to domain of application, but we will see some examples.
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PCA explains variation while clustering finds similarity

PCA finds low-dimensional representation of the data set that explains a good fraction of
total variance.

Clustering finds homogenous subsets of observations; i.e., subsets whose elements are
similar to one another.
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One can use clustering for market segmentation

• Consider measurements for median household income, occupation, distance from
nearest urban area, etc., for a large number of people.

• Goal: Market segmentation to identify subsets of people particularly receptive to some
forms of advertising or more likely to buy a particular product.

• This is a clustering problem.
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K-means clustering vs. hierarchical clustering

K-means clustering
Partition observations into a pre-specified number K of clusters

Hierarchical clustering
Explore clusters arising from all possible numbers of clusters between 1 and n, typically
using a dendrogram2

2From Greek δένδρον meaning tree and γράμμα meaning drawing or figure.
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Clustering methods

K-means clustering



K-means clustering

K=2 K=3 K=4

Figure 7: A simulated data set with 150 observations in 2-dimensional space. Panels show the
results of applying K -means clustering with different values of K , the number of clusters. The color
of each observation indicates the cluster to which it was assigend using the K means clustering
algorithm. Note that there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the clustering procedure. 28



Details of K means clustering

Let C1, . . . ,CK denote sets containing the indices of the observations in each cluster. If the
ith observation is in the kth cluster, then i ∈ Ck . These sets satisfy two properties:3

1. C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . ,n}. In other words, each observation belongs to at least
one of the K clusters.

2. Ck ∪ Ck′ = ∅ for all k 6= k′. In other words, the clusters are non-overlapping: no
observation belongs to more than one cluster.

3This is actually the definition of the partition of a set. The same concept was used in tree-based methods for
segmentation of the predictor space.
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K-means clustering minimizes within-cluster variation

• A good clustering is one for which the within-cluster variation is as small as possible.
This is what we meant above by saying that clustering found subsets of the data
whose observations were similar.

• For a cluster Ck , within-cluster variation WCV(Ck) measures how different
observations within the cluster are.

• K -means clustering solves the problem

{C1, . . . ,CK} = argmin

{ K∑
k=1

WCV(Ck)

}
. (2)

• In words, we partition the observations into K clusters such that total within-cluster
variation summed over all K clusters is as small as possible.
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Euclidean distance can measure within-cluster variation

WCV(Ck) =
1

|Ck |
∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2, (3)

where |Ck | is number of observations in kth cluster.

Combining 2 and 3 gives the optimization problem that defines K -means clustering,

{C1, . . . ,CK} = argmin


K∑
k=1

1
|Ck |

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2
 . (4)
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K-means clustering algorithm

Algorithm

1. Randomly assign a number, from 1 to K to each of the observations. These serve as
initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:
2.1 For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the

vector of the p feature means for the observations in the kth cluster.
2.2 Assign each observation to the cluster whose centroid is closest (where closest is defined

using Euclidean distance).
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K-means algorithm decreases WCV at each iteration

Note that
1

|Ck |
∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2 = 2
∑
i∈Ck

p∑
j=1

(xij − x̄kj)2.

However, this is not guaranteed to give the global minimum.
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Example: K-means algorithm with K = 3

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Data

Step 1
Iteration 1
Step 2a

Iteration 1
Step 2b

Iteration 2
Step 2a Final Results

Figure 8: Top left: Observations; Top center: Assign
each observation randomly to a cluster; Top right:
Compute cluster centroids (colored disks); for random
initial cluster assignment, centroids overlap; Bottom left:
Each observation is assigned to the nearest centroid;
Bottom center: cluster centroid assignment is repeated,
leading to new cluster centroids; Bottom right: Result
obtained after 10 iterations.
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Example: K-means algorithm with K = 3, starting values

320.9 235.8 235.8

235.8 235.8 310.9

Figure 9: K -means clustering performed six times on
data from previous figure with K = 3, with different
random assignment of observations in Step 1 of the
algorithm. Above each plot is the value of the objective
(Eq. 4). Three local optima were obtained, one of which
resulted in a smaller value of the objective and provides
better cluster separation. Those labeled in red all
achieved the same best solution.
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Clustering methods

Hierarchical clustering



Hierarchical clustering allows variable number of clusters

• In K -means clustering, we specify number of clusters K in advance.
• Hierarchical clustering does not require this.
• This section describes bottom-up or agglomerative clustering, the most common form

of clustering that builds a dendrogram from the leaves up to the trunk (“bottom-up”).4

4Recall that in tree diagrams—unlike in botany—terminal nodes/leaves are at the bottom of the diagram.
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Hierarchical clustering on simulated data
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Figure 10: 45 observations generated
in 2-dimensional space. In reality there
are three distinct classes, shown in
separate colors. However, we will treat
these class labels as unknown and will
seek to cluster the observations in order
to discover the classes from the data.
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Dendrogram for simulated data set cut at different heights
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Figure 11: Left: Dendrogram obtained from hierarchically clustering simulated data from previous slide, with
complete linkage and Euclidean distance; Center: Dendrogram from left panel cut at a height of 9 (dashed line),
resulting in two distinct clusters shown in different colors; Right: Same dendrogram cut at a height of 5, resulting
in three clusters. 38



There are different types of linkage in clustering

Linkage Description

Complete Maximal inter-cluster dissimilarity. Compute all pairwise dis-
similarities between observations in cluster A and observations
in cluster B, and record the largest of these dissimilarities.

Single Minimal inter-cluster dissimilarity. Compute all pairwise dissim-
ilarities between the observations in cluster A and the observa-
tions in cluster B, and record the smallest of these dissimilarities.

Average Mean inter-cluster dissimilarity. Compute all pairwise dissimilar-
ities between the observations in cluster A and the observations
in cluster B, and record the average of these dissimilarities.

Centroid Dissimilarity between the centroid for cluster A (a mean vector
of length p) and the centroid for cluster B. Centroid linkage can
result in undesirable inversions.
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Different dissimilarity measures can be used for clustering
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Figure 12: So far we have used Euclidean distance. An alternative is correlation-based distance which considers
two observations to be similar if their features are highly correlated. This is an unusual use of correlation, which
is normally computed between variables; here it is computed between observation profiles for each pair of
observations.
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Hierarchical clustering visualized
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Figure 13: First few steps of the
hierarchical clustering algorithm using
complete linkage and Euclidean distance.
Top Left: initially, there are nine distinct
clusters, {1}, {2}, . . . , {9}.
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Hierarchical clustering visualized
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Figure 13: First few steps of the
hierarchical clustering algorithm using
complete linkage and Euclidean distance.
Top Left: initially, there are nine distinct
clusters, {1}, {2}, . . . , {9}. Top Right: the
two clusters that are closest together {5} and
{7} are fused into a single cluster.
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Hierarchical clustering visualized

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

X1X1

X1X1
X

2

X
2

X
2

X
2

Figure 13: First few steps of the
hierarchical clustering algorithm using
complete linkage and Euclidean distance.
Top Left: initially, there are nine distinct
clusters, {1}, {2}, . . . , {9}. Top Right: the
two clusters that are closest together {5} and
{7} are fused into a single cluster. Bottom
Left: the two clusters that are closest
together, {6} and {1}, are fused together
into a single cluster.
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Hierarchical clustering visualized

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

1

2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5

X1X1

X1X1
X

2

X
2

X
2

X
2 Figure 13: First few steps of the

hierarchical clustering algorithm using
complete linkage and Euclidean distance.
Top Left: initially, there are nine distinct
clusters, {1}, {2}, . . . , {9}. Top Right: the
two clusters that are closest together {5} and
{7} are fused into a single cluster. Bottom
Left: the two clusters that are closest
together, {6} and {1}, are fused together
into a single cluster. Bottom Right: the
two clusters that are closest together using
complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.
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Clustering methods

Practical issues in clustering



Practical issue in clustering

• Scaling of the variables matters! Should the observations of features first be
standardized in some way? For instance, maybe the variables should be centered to
have mean zero and scaled to have standard deviation one.

• In the case of hierarchical clustering,
• What dissimilarity measure should be used?
• What type of linkage should be used?

• How many clusters to choose? (in both K -means or hierarchical clustering). Difficult
problem. No agreed-upon method. See Elements of Statistical Learning, Chapter 13,
for more details.

• Which features should we use to drive the clustering?
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Clustering Review

Fill in the blanks

1. Hierarchical clustering provides a graphical representation called a .

True or false?

1. Clusters are subsets of meaningfully similar observations.
2. K -means clustering determines the optimal number of clusters K for us.
3. Choosing the right number of clusters is inherently subjective.
4. Clustering is robust to variable scaling.
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Clustering Review

Fill in the blanks

1. Hierarchical clustering provides a graphical representation called a dendrogram.

True or false?

1. T Clusters are subsets of meaningfully similar observations.
2. F K -means clustering determines the optimal number of clusters K for us.
3. T Choosing the right number of clusters is inherently subjective.
4. F Clustering is robust to variable scaling.
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Summary5

Principal components analysis (PCA) is a method for reducing the dimensionality of a data set. It does this by
finding a new set of dimensions, called principal components, that capture as much of the variance in the data as
possible. These new dimensions are typically fewer in number than the original dimensions, which makes the data
easier to visualize and analyze. PCA is a common technique used in data analysis and machine learning.

K-means clustering is a method for grouping a set of data points into clusters. It does this by finding cluster
centers (also called means) that are representative of each group, and assigning each data point to the cluster
whose center is closest to it. K-means clustering is an iterative process, and the final clusters depend on the initial
cluster centers chosen. This method is often used in data analysis and machine learning to find structure in data.

Hierarchical clustering is a method for grouping data points into clusters. It does this by creating a hierarchy of
clusters, where each cluster is defined as a subset of the data points. This hierarchy can be represented as a tree,
with the clusters at the leaves and the clusters containing those clusters at the higher levels. Hierarchical
clustering is often used in data analysis and machine learning to find structure in data. Unlike k-means
clustering, hierarchical clustering does not require the user to specify the number of clusters upfront.

5The content of this slide was prepared by GPT 3.5. No modifications were made to the model’s output.
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This material draws extensively on James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An introduction to

statistical learning and the lecture slides available from these authors.

45


